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On s’intéresse à la modélisation de la propagation d’une épidémie qui affecte les grenouilles de
l’Yvette. Ce problème est constitué de deux parties complémentaires et indépendantes (à l’exception
de la question II.5). Il faut traiter les deux parties.

Dans la Partie I, on étudie un modèle continu (à l’échelle d’une population), déterministe, qui
modélise une flambée épidémique où une proportion non-négligeable de la population est infectée.

Dans la Partie II, on étudie un modèle discret (à l’échelle des individus), probabiliste, qui
modélise le début possible d’une épidémie.

Les questions ne sont pas classées par ordre de difficulté croissante ; vous pouvez admettre le
résultat d’une question pour traiter la suite du sujet.
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Partie I

On introduit le modèle SIR de propagation d’une épidémie. Dans ce modèle, les individus sont
soit susceptibles (S), soit infectieux (I) soit écartés (R). Les proportions relatives des individus
susceptibles, infectés, écartés à un instant t ∈ R sont notées respectivement s(t) ∈ [0, 1], i(t) ∈
[0, 1], r(t) ∈ [0, 1], et on a en permanence s(t) + i(t) + r(t) = 1.

Dans ce modèle, les individus susceptibles sont infectés à une vitesse qui dépend à la fois des
proportions d’individus susceptibles et infectieux (si personne n’est infectieux, ou si personne n’est
susceptible, alors l’épidémie ne peut pas progresser). Par ailleurs l’infection dure un certain temps,
et les individus infectés deviennent progressivement écartés (par guérison ou par mort). On obtient
le système d’équations différentielles suivant :

ds

dt
= −R0is

di

dt
= R0is− i

dr

dt
= i,

(SIR)

où R0, le taux de reproduction, est une constante. On supposera toujours R0 > 1. La configu-
ration initiale à t = 0 est un triplet quelconque (s0, i0, r0) de réels positifs tels que s0 + i0 + r0 = 1.

Question I.1: Montrer que les seuls points d’équilibre de cette dynamique sont les configura-
tions où aucun individu n’est infecté : {(s, 0, 1− s), s ∈ [0, 1]}.

Corrigé: Par définition, dans cette dynamique à temps continu, un point d’équilibre satisfait

ds

dt
= di

dt
= dr

dt
= 0.

Or
dr

dt
= 0⇔ i = 0,

donc un point d’équilibre vérifie nécessairement i = 0; réciproquement si i = 0 on vérifie que
ds
dt = di

dt = 0. Finalement, les points d’équilibre sont les triplets (s, i, r) de réels positifs vérifiant
i = 0, c’est-à-dire les points (s, 0, 1− s) où s ∈]0, 1].

Commentaire: Un nombre important de copies ont tenté de résoudre explicitement cette équa-
tion différentielle, ce qui n’est pas possible sans introduire la fonction spéciale W de Lambert. Parmi
les démarches malheureuses, on citera celle consistant à prétendre que s(t) = s(0) exp(−R0it), ce
qui n’est pas possible puisque i est constante. Il est vrai que s(t) = s(0) exp(−RoI(t)) où I est la
primitive de i qui s’annule en 0, mais ça ne servait pas à grand chose, ni dans cette question ni
dans la suite du problème.

On cherche à étudier la stabilité de ces points d’équilibre.

Question I.2: Montrer que, en plus de s(t) + i(t) + r(t), il y a une autre quantité conservée
par l’équation différentielle (SIR):

H = R0(i + s)− ln(s).
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On pourra utiliser à profit la formule

dH

dt
= dH

di

di

dt
+ dH

ds

ds

dt
.

Corrigé: On a
dH

di
= R0

dH

ds
= R0 −

1
s

et donc

dH

dt
= R0(R0is− i)− (R0 − 1

s )(R0is)

= R2
0is−R0i−R2

0is + R0i

= 0;

c’est la définition d’une quantité conservée.
Commentaire: Cette question était une variante de l’objet du TD1, qui visait à montrer que

l’énergie totale était conservée dans un système mécanique sans frottement.

Question I.3: On considère n’importe quelle trajectoire s(t), i(t), r(t) vérifiant l’équation (SIR).
Montrer que s est une fonction décroissante, et en déduire qu’elle converge quand t→ +∞ et quand
t→ −∞. Montrer aussi que r est une fonction croissante, et en déduire qu’elle converge également.
Montrer finalement que i converge.

Corrigé: Puisque i, s, R0 sont trois quantités positives, ds
dt est négatif, et donc s est décroissante

sur R. Puisque s ∈ [0, 1] par hypothèse de modélisation, elle est bornée, et on en déduit que s
converge en ±∞.

De la même manière dr
dt est positif, donc r est une fonction croissante du temps, et appartient

à [0, 1]; ainsi r converge en ±∞.
Finalement, puisque i = 1− s− r, on en déduit que i converge évalement en ±∞.
Commentaire: Attention à ne pas prétendre que, puisque s est décroissante sur R et appartient

à [0, 1], alors elle tend vers 0 en +∞!

Question I.4: Étudier la fonction

s 7→ R0s− ln(s)

sur l’intervalle ]0, 1]. Montrer en particulier que les courbes {H = constante} intersectent le lieu
d’équilibre {i = 0}, soit en deux points, soit en un seul point.

Corrigé: Notons h la fonction qui à s associe R0s− ln(s). Sa dérivée est h′(s) = R0− 1
s , et on

peut dresser le tableau de variation de h: elle tend vers +∞ en 0, est décroissante sur ]0, 1
R0

], vaut
1 + ln(R0) en 1

R0
, puis est croissante sur [ 1

R0
, 1], et vaut R0 en 1.

On remarque que h(s) = H(s, 0), autrement dit h est la restriction de H à {i = 0}. Dès lors,
pour tout C ∈ R, on a

{H = C} ∩ {i = 0} = {h = C},

et, vu le tableau de variation de h, on peut conclure: {H = C} intersecte {s = 0}

• zéro fois si C < 1 + ln(R0),
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• une fois si C = 1 + ln(R0),

• deux fois si 1 + ln(R0) < C ≤ R0,

• et à nouveau une fois si C > R0.

La fonction H étant croissante par rapport à i, on sait que H(i, s) ≤ h(s) ≤ 1 + ln(R0) pour tout
i, s, et donc que {H = C} est vide si C < 1 + ln(R0); finalement la première condition n’arrive
jamais, et les courbes {H = C} intersectent {i = 0} soit en un point soit en deux points.

Commentaire: Curieusement, cette question, relativement indépendante du reste du sujet et
accessible sans avoir appris son cours, a été très mal réussie.

Question I.5: Dans l’annexe (à rendre avec la copie) on a dessiné les courbes de niveau de
la fonction H dans le plan (s, i), le long desquelles le système évolue. Rajouter des flèches pour
préciser dans quel sens évolue la dynamique, et préciser la valeur du point marqué. Représenter les
points d’équilibre instables et les points d’équilibre stables (n’oubliez pas de légender).

Corrigé:

Les flèches vont vers la gauche, sur chacune des courbes : s est une fonction décroissante du temps
! Il suit que, pour toute configuration initiale proche d’un des points d’équilibre bleu (ou le point
noir en 1

R0
), la trajectoire va tendre, en temps positif, vers un point d’équilibre proche de ce point

d’équilibre. A l’inverse, les points d’équilibre représentés en rouge sont instables : pour toute
configuration initiale proche, mais pas sur l’axe {i = 0}, on va avoir une vraie flambée épidémique
(en suivant l’une des courbes de niveau de H de la gauche vers la droite) pour finir en l’un des
points bleus.

Commentaire: cette question cristallisait le degré de compréhension du modèle.
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Description complète du modèle: Le modèle SIR est le modèle le plus simple pour représen-
ter la propagation d’une épidémie. Dans ce modèle, une immunité de masse se forme en s = 1

R0
:

tant que s est trop grand (s’il y a trop d’individus susceptibles), l’épidémie va progresser, et il va
y avoir de plus en plus d’individus infectés (d’après l’allure des courbes {H = C}). Une fois que
s < 1

R0
, il n’y a plus assez d’individus susceptibles, et i commence à décroître.

Dans toute épidémie, il y a un pourcentage d’individus immunisés, soit pour des raisons
génétiques (par exemple, chez l’humain, certaines mutations des gènes codant pour les protéines
CCR5, CD4, ou le système HLA, assurent un degré d’immunité face à la variole, l’hépatite B,
la peste bubonique, et/ou le SIDA), soit par mémoire immunitaire, après une précédente infec-
tion ou une vaccination ; au début d’une vague potentielle d’épidémie, on n’est pas forcément à
s = 1, i = 0, r = 0. Pour lutter efficacement contre une épidémie, dans ce modèle, il faut réduire s
(et la vaccination assure le meilleur rapport bénéfice/risque pour le faire), et réduire R0, c’est-à-dire
limiter la faculté de l’épidémie à se transmettre une fois qu’elle a infecté un individu. Ce sont les
mesures prophylactiques, encore appelées gestes barrière : d’une part les mesures d’ordre général
telles que tests, traçage, isolement, quarantaine, et d’autre part des mesures moins contraignantes
mais adaptées au mode de transmission d’une maladie donnée comme le port d’une protection
jetable (masque, gants, préservatif, ...), aération, désinfection, traitement des eaux usées, et ainsi
de suite.

Les limitations du modèle SIR sont multiples: d’abord, pour certaines maladies comme le Covid-
19, l’immunité acquise après l’infection ne dure qu’un certain temps, alors qu’ici on a supposé que
les personnes qui avaient été infectées une fois étaient écarté du modèle “pour toujours”. En général,
à moins que la flambée épidémique soit extrêmement rapide, il faut également prendre en compte
le cycle de vie naturel des populations : naissance de nouveaux individus peu ou pas immunisés, et
mort d’individus pour d’autres raisons. On peut corriger le modèle SIR pour prendre ces effets en
compte, notamment en rajoutant des termes dans l’équation différentielle.

D’autres difficultés sont plus inhérentes à une modélisation par une équation différentielle : le
modèle SIR suppose une population homogène, or en général différentes catégories d’individus ont
une immunité préalable différente, ou un R0 effectif différent. Par ailleurs, ce modèle suppose une
grande quantité d’individus dans chaque groupe (susceptible, infecté, écarté), et est mal adapté à
l’étude du début ou de la fin d’une épidémie (ou très peu de personnes sont infectées) ainsi qu’à
l’étude de la propagation de maladies dans des petites populations (par exemple, pour les espèces
en voie de disparition).

Dans les cas d’une faible population au total ou d’un faible nombre d’individus infectés, un
modèle probabiliste s’impose pour mieux étudier la propagation, et c’est l’objet de la partie II.
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Partie II
Si i = 0 et pour certaines valeurs de s, l’épidémie ne peut pas démarrer, d’après les résultats de

la partie I. On se propose de conforter ces résultats à l’aide d’un modèle à l’échelle des individus.
Dans les premières phases d’une tentative de flambée épidémique, seul un nombre restrient

d’individus (négligeable par rapport à la taille de la population) est infecté. Dans ce régime, les
individus susceptibles forment un “réservoir” infini.

Une modélisation raisonnable pour la propagation épidémique est alors le modèle probabiliste
à temps discret suivant.

Au temps initial, une seule grenouille est malade. À chaque temps n ∈ N, chaque individu
malade au temps n−1 a guéri, mais entre temps il a infecté un nombre aléatoire d’autres grenouilles.
On se donne des probabilités

p0, p1, p2, . . .

dont la somme fait p0 + p1 + p2 + . . . = 1. Alors, indépendamment les uns des autres, on suppose
que chaque individu malade a contaminé k autres grenouilles avec probabilité pk. Si à un moment
donné plus aucune grenouille n’est infectée, alors l’épidémie s’est éteinte.

Le nombre moyen de grenouilles infectées par individu malade et par unité de temps est noté

R = 1× p1 + 2× p2 + 3× p3 + . . . .

Pour tout n ∈ N, on note qk(n) la probabilité que k individus soit infectés au temps n. On a donc
q1(0) = 1 et qk(0) = 0 pour tout k 6= 1. Le nombre moyen de grenouilles infectées au temps n est
noté

In = 1× q1(n) + 2× q2(n) + 3× q3(n) + . . .

Question II.1 Puisqu’en moyenne, une grenouille infectée au temps n résulte en R grenouilles
infectées au temps n + 1, quelle est l’équation de récurrence vérifiée par In ? (Un raisonnement
heuristique suffira, points bonus pour une démonstration rigoureuse).

Corrigé On trouve immédiatement In+1 = RIn, puisque chaque grenouille en infecte, en
moyenne, R autres.

Le moyen le plus confortable de donner une démonstration rigoureuse est d’utiliser le langage des
probabilités conditionnelles. Soit k ∈ N et supposons qu’au temps n il y ait k grenouilles infectées.
Cet évènement, qui arrive avec probabilité qk(n), est noté Ak(n). Alors, conditionnellement à
Ak(n), chacune des k grenouilles malades infectant R grenouilles en moyenne, on aura, au temps
n + 1, en moyenne, kR grenouilles malades.

Finalement, par la formule des probabilités totales,

In+1 =
∑

k

kRP[Ak(n)] = R
∑

k

kqk(n) = RIn.

Commentaire Certaines personnes ont mal interprété le sujet et trouvé In+1 = (R− 1)In (en
pensant que, dans le calcul de R, on prenait en compte les grenouilles déjà malades).

Question II.2 On suppose R < 1. Montrer que In → 0 lorsque n→ +∞.

Corrigé La suite In est une suite géométrique de raison R, et on a supposé R < 1.

Question II.3 Montrer l’inégalité de Markov

q0(n) ≥ 1− In.
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Déduire des questions précédentes que, si R < 1, alors quand n→ +∞, la probabilité que l’épidémie
se soit éteinte tend vers 1.

Corrigé On a par définition

q0(n) + q1(n) + q2(n) + q3(n) + . . . = 1,

et donc, puisque tous les qk(n) sont positifs ou nuls,

q0(n) + q1(n) + 2q2(n) + 3q3(n) + . . .︸ ︷︷ ︸
=In

≥ 1.

Finalement q0(n) ≥ 1−In. On peut maintenant appliquer le théorème du sandwich : on a 1−In → 1
lorsque n→ +∞, et par ailleurs q0(n) ≥ 1 puisque c’est une probabilité, donc q0(n)→ 1.

Question II.4 On suppose que R > 1. Comment qualifier la vitesse de propagation (en
moyenne) de l’épidémie ?

Corrigé On a toujours In = I0Rn, donc on a, en moyenne, une propagation exponentielle !

Question II.5 Comparer les résultats de la question précédente avec le comportement asymp-
totique de la proportion d’infectés dans le modèle (SIR) quand t → −∞ (Indice : justifier le
remplacement de s par une constante). Quel est le lien entre R et R0 ?

Corrigé Le début de l’épidémie correspond à t proche de −∞ dans le modèle SIR. Puisque
s converge vers s− en −∞, on peut le remplacer par une constante dans l’équation différentielle
portant sur i, et on trouve

i(t) = i0 exp((R0s− − 1)t).

Si t0 est le temps typique pendant lequel un individu est contagieux, alors en un laps de temps t0,
i a été multiplié par

R = exp((R0s− − 1)t0).

On retrouve le lien entre la potentialité d’une flambée épidémique et R0s−: on a s− > 1
R0

si et
seulement si R > 1.

Commentaire Attention à l’homogénéité ! R est une quantité adimensionnée mais R0 est
homogène à l’inverse d’un temps, donc on ne peut pas avoir R = R0, R = R0s, ou autre chose du
même goût.
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Description complète du modèle Ce modèle étant, par essence, probabiliste, même si R < 1
on ne peut pas garantir qu’au bout d’un temps fixé l’épidémie se sera éteinte: il est toujours possible,
même si cela arrive avec une probabilité de plus en plus faible, que l’épidémie survive.

S’il y a initialement un seul individu malade, alors les résultats de ce modèle sont très variables
: le nombre d’infectés moyen décrit assez mal les différentes trajectoires. On a simulé, par exemple,
50 fois, ce modèle, pour p0 = 0.4, p1 = 0.3, p2 = 0.3, correspondant à R = 0.9. L’épidémie a
tendance à s’éteindre, mais les trajectoires du nombre d’individus infectés en fonction du temps (en
bleu) ne suivent pas l’allure de In (en rouge).

On voit que, pour chacune de ces 50 simulations, l’épidémie s’est éteinte, mais ça a pu prendre un
certain temps pour quelques unes de ces simulations.

L’une des subtilités de ce modèle est que, si R > 1, alors l’épidémie se propage en moyenne, mais
il est quand même possible que l’épidémie s’arrête. Par exemple, avec p0 = 0.3, p1 = 0.3, p2 = 0.4,
on a R = 1.1 > 1, mais si on commence avec un seul individu malade, on a déjà une probabilité 0.3
qu’elle n’infecte personne et que l’épidémie s’arrête immédiatement ! On a représenté ici 50 tirages
pour ce modèle :

On peut compter “à la main” que, parmi ces 50 essais, on a eu une flambée épidémique dans
seulement 8 cas. On constate aussi que, au sein des flambées épidémiques “réussies”, la croissance
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est beaucoup plus rapide que la moyenne (courbe rouge). C’est normal, car seuls ces essais comptent
pour un nombre d’infectés non nul!

Si on commence avec plus d’individus infectés, alors les effets de la loi des grands nombres se
font sentir, et les différentes simulations sont à peu près proches de la courbe moyenne. On a simulé
50 tirages, en partant de 1000 individus infectés, pour les deux lois de probabilité plus haut:

Ce modèle est intéressant pour étudier finement les propriétés de la manière dont l’épidémie se
propage. On peut comparer, par exemple, les résultats de p0 = 0.3, p1 = 0.3, p2 = 0.4, avec
une hypothèse de type “supercluster”: une proportion faible d’individus va en infecter beaucoup
d’autres, par exemple avec p0 = 0.9 et p11 = 0.1. Dans les deux cas on a R = 1.1, mais dans le
modèle supercluster, les flambées épidémiques sont plus violentes, ici avec 200 simulations:

On a une chance plus faible d’une flambée épidémique, mais puisque la moyenne est la même, s’il
y a flambée, le nombre de personnes infectées grandit très vite.

On constate donc qu’il est non seulement important de réduire R, c’est-à-dire de réduire R0 et
s en moyenne, mais aussi d’éliminer les possibilités de supercluster.
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