Université Paris-Saclay Mathématiques et Physique en Interaction
L1 DD MP 2021-2022

Examen de Mathématiques et Physique en Interaction
Corrigé et commentaires

Durée : 1 heure 30 minutes
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montre a affichage digital. Merci d’éteindre et de ranger dans vos sacs vos téléphones et autres
objets connectés.

On s’intéresse a la modélisation de la propagation d’une épidémie qui affecte les grenouilles de
I"Yvette. Ce probléeme est constitué de deux parties complémentaires et indépendantes (a I’exception
de la question IL1.5). Il faut traiter les deux parties.

Dans la Partie I, on étudie un modele continu (& I’échelle d’une population), déterministe, qui
modélise une flambée épidémique ot une proportion non-négligeable de la population est infectée.

Dans la Partie II, on étudie un modele discret (& ’échelle des individus), probabiliste, qui
modélise le début possible d’une épidémie.

Les questions ne sont pas classées par ordre de difficulté croissante ; vous pouvez admettre le
résultat d’une question pour traiter la suite du sujet.



Partie I

On introduit le modele SIR de propagation d’une épidémie. Dans ce modele, les individus sont
soit susceptibles (S), soit infectieux (I) soit écartés (R). Les proportions relatives des individus
susceptibles, infectés, écartés & un instant ¢ € R sont notées respectivement s(t) € [0,1],i(t) €
[0,1],7(t) € [0,1], et on a en permanence s(t) + i(t) + r(t) = 1.

Dans ce modele, les individus susceptibles sont infectés a une vitesse qui dépend a la fois des
proportions d’individus susceptibles et infectieux (si personne n’est infectieux, ou si personne n’est
susceptible, alors I’épidémie ne peut pas progresser). Par ailleurs l'infection dure un certain temps,
et les individus infectés deviennent progressivement écartés (par guérison ou par mort). On obtient
le systéme d’équations différentielles suivant :
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ou Ry, le taux de reproduction, est une constante. On supposera toujours Ry > 1. La configu-

ration initiale & ¢ = 0 est un triplet quelconque (sg, 0, 79) de réels positifs tels que sg +ig + 79 = 1.
Question I.1: Montrer que les seuls points d’équilibre de cette dynamique sont les configura-

tions ou aucun individu n’est infecté : {(s,0,1 —s),s € [0,1]}.
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Corrigé: Par définition, dans cette dynamique a temps continu, un point d’équilibre satisfait
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donc un point d’équilibre vérifie nécessairement ¢ = 0; réciproquement si ¢ = 0 on vérifie que
% = % = 0. Finalement, les points d’équilibre sont les triplets (s,,r) de réels positifs vérifiant
i = 0, c’est-a-dire les points (s,0,1 — s) ou s €]0, 1].

Commentaire: Un nombre important de copies ont tenté de résoudre explicitement cette équa-
tion différentielle, ce qui n’est pas possible sans introduire la fonction spéciale W de Lambert. Parmi
les démarches malheureuses, on citera celle consistant & prétendre que s(t) = s(0) exp(—Rpit), ce
qui n’est pas possible puisque i est constante. Il est vrai que s(t) = s(0) exp(—R,I(t)) ou I est la
primitive de ¢ qui s’annule en 0, mais ¢a ne servait pas a grand chose, ni dans cette question ni
dans la suite du probleme.

On cherche & étudier la stabilité de ces points d’équilibre.

Question I1.2: Montrer que, en plus de s(t) + i(t) + r(t), il y a une autre quantité conservée
par I’équation différentielle (SIR):

H = Ry(i+s) — In(s).



On pourra utiliser a profit la formule

dH_ dH di dH ds
dt  di dt  ds dt’

Corrigé: On a

dH dH 1
o~ T s g
et donc
dH .
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= R%is — Ryi — R3is + Ryi
=0;

c’est la définition d’une quantité conservée.
Commentaire: Cette question était une variante de 'objet du TD1, qui visait & montrer que
I’énergie totale était conservée dans un systéme mécanique sans frottement.

Question I.3: On considére n’importe quelle trajectoire s(t),i(t), r(t) vérifiant I’équation (SIR).
Montrer que s est une fonction décroissante, et en déduire qu’elle converge quand ¢t — oo et quand
t — —oo0. Montrer aussi que r est une fonction croissante, et en déduire qu’elle converge également.
Montrer finalement que i converge.

Corrigé: Puisque 7, s, Ry sont trois quantités positives, % est négatif, et donc s est décroissante

sur R. Puisque s € [0,1] par hypothése de modélisation, elle est bornée, et on en déduit que s
converge en Foo.

De la méme maniere % est positif, donc r est une fonction croissante du temps, et appartient
a [0, 1]; ainsi r converge en +o0.

Finalement, puisque ¢ = 1 — s — 7, on en déduit que ¢ converge évalement en +oc.

Commentaire: Attention a ne pas prétendre que, puisque s est décroissante sur R et appartient

a [0, 1], alors elle tend vers 0 en +oo!
Question 1.4: Etudier la fonction
s+ Ros — In(s)

sur l'intervalle |0, 1]. Montrer en particulier que les courbes {H = constante} intersectent le lieu
d’équilibre {i = 0}, soit en deux points, soit en un seul point.

Corrigé: Notons & la fonction qui & s associe Ros — In(s). Sa dérivée est h'(s) = Ry — 1, et on
peut dresser le tableau de variation de h: elle tend vers 400 en 0, est décroissante sur |0, P%O], vaut
1+ 1In(Rp) en I%’ puis est croissante sur [RLO, 1], et vaut Ry en 1.

On remarque que h(s) = H(s,0), autrement dit h est la restriction de H a {i = 0}. Des lors,
pour tout C' € R, on a

{H=Cpn{i=0} ={h=0C},

et, vu le tableau de variation de h, on peut conclure: {H = C'} intersecte {s = 0}

o zéro fois si C' < 1+ In(Ryp),



o une fois si C =1+ In(Ry),
o deux fois si 1 +In(Ry) < C < Ry,
e et & nouveau une fois si C' > Ry.

La fonction H étant croissante par rapport a i, on sait que H(i,s) < h(s) < 1+ In(Rp) pour tout
i,s, et donc que {H = C} est vide si C < 1+ In(Rp); finalement la premiére condition n’arrive
jamais, et les courbes {H = C'} intersectent {¢ = 0} soit en un point soit en deux points.

Commentaire: Curieusement, cette question, relativement indépendante du reste du sujet et
accessible sans avoir appris son cours, a été tres mal réussie.

Question I.5: Dans 'annexe (& rendre avec la copie) on a dessiné les courbes de niveau de
la fonction H dans le plan (s,i), le long desquelles le systéeme évolue. Rajouter des fleches pour
préciser dans quel sens évolue la dynamique, et préciser la valeur du point marqué. Représenter les
points d’équilibre instables et les points d’équilibre stables (n’oubliez pas de légender).

Corrigé:

Annexe : Courbes de niveau pour H=RO0(i+s)-In(s), avec RO=7
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Les fleches vont vers la gauche, sur chacune des courbes : s est une fonction décroissante du temps
I' 11 suit que, pour toute configuration initiale proche d’un des points d’équilibre bleu (ou le point
noir en Rio), la trajectoire va tendre, en temps positif, vers un point d’équilibre proche de ce point
d’équilibre. A D’inverse, les points d’équilibre représentés en rouge sont instables : pour toute
configuration initiale proche, mais pas sur l'axe {i = 0}, on va avoir une vraie flambée épidémique
(en suivant 'une des courbes de niveau de H de la gauche vers la droite) pour finir en l'un des
points bleus.

Commentaire: cette question cristallisait le degré de compréhension du modéle.



Description compléte du modeéle: Le modele SR est le modele le plus simple pour représen-
ter la propagation d’une épidémie. Dans ce modele, une immunité de masse se forme en s = R%:
tant que s est trop grand (s’il y a trop d’individus susceptibles), 1’épidémie va progresser, et il va
y avoir de plus en plus d’individus infectés (d’apres l'allure des courbes {H = C}). Une fois que
§ < R%ﬂ il n’y a plus assez d’individus susceptibles, et ¢ commence & décroitre.

Dans toute épidémie, il y a un pourcentage d’individus immunisés, soit pour des raisons
génétiques (par exemple, chez ’humain, certaines mutations des génes codant pour les protéines
CCR5, CD4, ou le systeme HLA, assurent un degré d’immunité face a la variole, I’hépatite B,
la peste bubonique, et/ou le SIDA), soit par mémoire immunitaire, aprés une précédente infec-
tion ou une vaccination ; au début d’une vague potentielle d’épidémie, on n’est pas forcément a
s=1,1=0,r = 0. Pour lutter efficacement contre une épidémie, dans ce modele, il faut réduire s
(et la vaccination assure le meilleur rapport bénéfice/risque pour le faire), et réduire Ry, c’est-a-dire
limiter la faculté de I’épidémie a se transmettre une fois qu’elle a infecté un individu. Ce sont les
mesures prophylactiques, encore appelées gestes barriere : d’une part les mesures d’ordre général
telles que tests, tragage, isolement, quarantaine, et d’autre part des mesures moins contraignantes
mais adaptées au mode de transmission d’une maladie donnée comme le port d’une protection
jetable (masque, gants, préservatif, ...), aération, désinfection, traitement des eaux usées, et ainsi
de suite.

Les limitations du modele SIR sont multiples: d’abord, pour certaines maladies comme le Covid-
19, 'immunité acquise apres I'infection ne dure qu’un certain temps, alors qu’ici on a supposé que
les personnes qui avaient été infectées une fois étaient écarté du modele “pour toujours”. En général,
a moins que la flambée épidémique soit extrémement rapide, il faut également prendre en compte
le cycle de vie naturel des populations : naissance de nouveaux individus peu ou pas immunisés, et
mort d’individus pour d’autres raisons. On peut corriger le modele SIR pour prendre ces effets en
compte, notamment en rajoutant des termes dans I’équation différentielle.

D’autres difficultés sont plus inhérentes a une modélisation par une équation différentielle : le
modele SIR suppose une population homogene, or en général différentes catégories d’individus ont
une immunité préalable différente, ou un Ry effectif différent. Par ailleurs, ce modele suppose une
grande quantité d’individus dans chaque groupe (susceptible, infecté, écarté), et est mal adapté a
Iétude du début ou de la fin d’une épidémie (ou tres peu de personnes sont infectées) ainsi qu’a
Pétude de la propagation de maladies dans des petites populations (par exemple, pour les espéces
en voie de disparition).

Dans les cas d’une faible population au total ou d’un faible nombre d’individus infectés, un
modele probabiliste s'impose pour mieux étudier la propagation, et c’est I’'objet de la partie II.



Partie 11

Si i = 0 et pour certaines valeurs de s, ’épidémie ne peut pas démarrer, d’apres les résultats de
la partie I. On se propose de conforter ces résultats a I’aide d’un modele a I’échelle des individus.

Dans les premieres phases d’une tentative de flambée épidémique, seul un nombre restrient
d’individus (négligeable par rapport a la taille de la population) est infecté. Dans ce régime, les
individus susceptibles forment un “réservoir” infini.

Une modélisation raisonnable pour la propagation épidémique est alors le modele probabiliste
a temps discret suivant.

Au temps initial, une seule grenouille est malade. A chaque temps n € N, chaque individu
malade au temps n—1 a guéri, mais entre temps il a infecté un nombre aléatoire d’autres grenouilles.
On se donne des probabilités

bo,P1,D25 - - -

dont la somme fait py + p1 + p2 + ... = 1. Alors, indépendamment les uns des autres, on suppose
que chaque individu malade a contaminé k autres grenouilles avec probabilité pg. Si & un moment
donné plus aucune grenouille n’est infectée, alors ’épidémie s’est éteinte.

Le nombre moyen de grenouilles infectées par individu malade et par unité de temps est noté

R=1Xp1+2Xxp+3xXp3+....

Pour tout n € N, on note gx(n) la probabilité que k individus soit infectés au temps n. On a donc
q1(0) =1 et gx(0) = 0 pour tout k # 1. Le nombre moyen de grenouilles infectées au temps n est
noté

I,=1xq(n)+2xqg(n)+3xqgs3(n)+...

Question II.1 Puisqu’en moyenne, une grenouille infectée au temps n résulte en R grenouilles
infectées au temps n + 1, quelle est ’équation de récurrence vérifiée par I, 7 (Un raisonnement
heuristique suffira, points bonus pour une démonstration rigoureuse).

Corrigé On trouve immédiatement I,.1; = RI,, puisque chaque grenouille en infecte, en
moyenne, R autres.

Le moyen le plus confortable de donner une démonstration rigoureuse est d’utiliser le langage des
probabilités conditionnelles. Soit &k € N et supposons qu’au temps n il y ait k£ grenouilles infectées.
Cet évenement, qui arrive avec probabilité gx(n), est noté Ag(n). Alors, conditionnellement a
Ag(n), chacune des k grenouilles malades infectant R grenouilles en moyenne, on aura, au temps
n + 1, en moyenne, kR grenouilles malades.

Finalement, par la formule des probabilités totales,

Ing1 =Y KkRP[Ai(n)] = R kqr(n) = RI,.
k k

Commentaire Certaines personnes ont mal interprété le sujet et trouvé I,,1; = (R — 1)1, (en
pensant que, dans le calcul de R, on prenait en compte les grenouilles déja malades).

Question II.2 On suppose R < 1. Montrer que I,, — 0 lorsque n — +o0.
Corrigé La suite I, est une suite géométrique de raison R, et on a supposé R < 1.
Question I1.3 Montrer I'inégalité de Markov

qo(n) > 1—1I,.



Déduire des questions précédentes que, si R < 1, alors quand n — +o0, la probabilité que 1’épidémie
se soit éteinte tend vers 1.

Corrigé On a par définition
go(n) +q1(n) + g2(n) + gzs(n) +... =1,
et donc, puisque tous les gi(n) sont positifs ou nuls,

qo(n) + q1(n) + 2g2(n) + 3gz(n) +... > 1.
=1,

Finalement go(n) > 1—1,. On peut maintenant appliquer le théoréme du sandwich : ona 1-1,, — 1
lorsque n — +o00, et par ailleurs go(n) > 1 puisque c’est une probabilité, donc go(n) — 1.

Question II.4 On suppose que R > 1. Comment qualifier la vitesse de propagation (en
moyenne) de I’épidémie ?

Corrigé On a toujours I, = IgR", donc on a, en moyenne, une propagation exponentielle !

Question II.5 Comparer les résultats de la question précédente avec le comportement asymp-
totique de la proportion d’infectés dans le modele (SIR) quand t — —oo (Indice : justifier le
remplacement de s par une constante). Quel est le lien entre R et Ry ?

Corrigé Le début de I’épidémie correspond a t proche de —oo dans le modele SIR. Puisque
s converge vers s_ en —oo, on peut le remplacer par une constante dans 1’équation différentielle
portant sur 7, et on trouve

i(t) = igexp((Ros— — 1)t).

Si tg est le temps typique pendant lequel un individu est contagieux, alors en un laps de temps ¢y,
i a été multiplié par
R = exp((Ros— — 1)to).

On retrouve le lien entre la potentialité d’une flambée épidémique et Rgs_: on a s_ > RLO si et

seulement si R > 1.

Commentaire Attention a I’homogénéité | R est une quantité adimensionnée mais Ry est
homogene a I'inverse d’un temps, donc on ne peut pas avoir R = Ry, R = Rys, ou autre chose du
méme gofit.



Description compléte du modele Ce modele étant, par essence, probabiliste, méme si R < 1
on ne peut pas garantir qu’au bout d’un temps fixé ’épidémie se sera éteinte: il est toujours possible,
méme si cela arrive avec une probabilité de plus en plus faible, que ’épidémie survive.

S’il y a initialement un seul individu malade, alors les résultats de ce modele sont tres variables
: le nombre d’infectés moyen décrit assez mal les différentes trajectoires. On a simulé, par exemple,
50 fois, ce modele, pour py = 0.4,p; = 0.3,ps = 0.3, correspondant & R = 0.9. L’épidémie a
tendance a s’éteindre, mais les trajectoires du nombre d’individus infectés en fonction du temps (en
bleu) ne suivent pas l’allure de I, (en rouge).
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On voit que, pour chacune de ces 50 simulations, I’épidémie s’est éteinte, mais ¢a a pu prendre un
certain temps pour quelques unes de ces simulations.

L’une des subtilités de ce modele est que, si R > 1, alors I’épidémie se propage en moyenne, mais
il est quand méme possible que 1’épidémie s’arréte. Par exemple, avec pyp = 0.3,p1 = 0.3, py = 0.4,
ona R=1.1> 1, mais si on commence avec un seul individu malade, on a déja une probabilité 0.3
qu’elle n’infecte personne et que I’épidémie s’arréte immédiatement ! On a représenté ici 50 tirages
pour ce modele :
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On peut compter “a la main” que, parmi ces 50 essais, on a eu une flambée épidémique dans
seulement 8 cas. On constate aussi que, au sein des flambées épidémiques “réussies”, la croissance



est beaucoup plus rapide que la moyenne (courbe rouge). C’est normal, car seuls ces essais comptent
pour un nombre d’infectés non nul!

Si on commence avec plus d’individus infectés, alors les effets de la loi des grands nombres se
font sentir, et les différentes simulations sont a peu pres proches de la courbe moyenne. On a simulé
50 tirages, en partant de 1000 individus infectés, pour les deux lois de probabilité plus haut:
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Ce modele est intéressant pour étudier finement les propriétés de la maniere dont I’épidémie se
propage. On peut comparer, par exemple, les résultats de pg = 0.3,p1 = 0.3,p2 = 0.4, avec
une hypotheése de type “supercluster”: une proportion faible d’individus va en infecter beaucoup
d’autres, par exemple avec pg = 0.9 et p;; = 0.1. Dans les deux cas on a R = 1.1, mais dans le
modele supercluster, les flambées épidémiques sont plus violentes, ici avec 200 simulations:
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On a une chance plus faible d’une flambée épidémique, mais puisque la moyenne est la méme, s’il
y a flambée, le nombre de personnes infectées grandit tres vite.

On constate donc qu’il est non seulement important de réduire R, c’est-a-dire de réduire Ry et
s en moyenne, mais aussi d’éliminer les possibilités de supercluster.



