
Séance à distance 5

L’entropie

1 Introduction

L’objet de cette séance est l’introduction et l’étude d’une quantité physique, l’entropie.
L’entropie apparaît dans des contextes où on a un désordre apparent. Ce désor-

dre peut être dû à un facteur probabiliste dans la dynamique (par exemple, dans
une chaîne de Markov, l’évolution n’est pas du tout déterministe), ou bien à une dy-
namique déterministe mais chaotique (comme pour la suite logistique, si on choisit
r = 4). Elle est néanmoins plus facile à appréhender dans un contexte probabiliste, et
c’est dans ce contexte que nous allons nous placer.

On considère N pièces de monnaie parfaitement équilibrées. Chacune de ces pièces,
quand on la lance, retombe sur pile avec probabilité 1

2 , et sur face avec probabilité 1
2 .

Initialement, chacune des pièces de monnaie est sur pile. Puis, on joue au jeu
suivant: on choisit une pièce au hasard (chaque pièce a la même probabilité d’être
choisie), on la lance, on la repose à sa place, et on note, pour chaque pièce, si elle est
maintenant sur pile ou sur face.

Pour N = 2, par exemple, on peut jouer à ce jeu et obtenir le résultat suivant:

P P FP FF FP FP P P P P · · ·

Question 1. Montrer que, pour tout N ∈ N, ce jeu est une chaîne de Markov avec 2N

états.
Représenter graphiquement cette chaîne de Markov pour N = 1, N = 2 et N = 3.

(Indice : c’est un dessin dans RN .)

On appellera maintenant “état” des pièces la donnée, pour chaque pièce, de si elle
est sur pile ou sur face. Les états pour deux pièces sont donc P P ,P F,FP et FF.

Question 2. Montrer que cette chaîne de Markov est irréductible et apériodique. En
déduire qu’elle admet une unique loi d’équilibre.

Question 3.

1. Montrer que la loi d’équilibre µ vérifie, pour tout site i,

µ(i) =
1

#(j tels que i ∼ j)

∑
i∼j

µ(j);

où i ∼ j signifie que le site i est relié directement au site j mais i , j (autrement
dit, i diffère de j par exactement une lettre).
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2. En déduire que µ est la loi uniforme: µ(i) = µ(j) pour tous les sites i et j. (Indice
: considérer un site i maximal: µ(i) ≥ µ(j) pour tout j ; établir que tous les
voisins de i sont également maximaux ; conclure).

Question 4. On prend N = 25. Après avoir joué à ce jeu pendant très longtemps,
lequel de ces deux états vous paraît le plus typique ? Lequel est le plus probable ?

P P P P P P P P P P P P P P P P P P P P P P P P P FFP P P P FP FP FP FP P P FP P FFFP P P

Au vu de la question 3, on pourrait remplacer ce jeu par un autre, encore plus
simple: à chaque tour, on lance toutes les pièces en même temps. Après un tour, tous
les états apparaissent avec la même probabilité; en particulier, les états présentés
dans la question 4 sont équiprobables. Pourtant, l’intuition nous dit que l’état de
droite est plus vraisemblable, car il est plus désordonné.

L’entropie consiste en une mesure de ce désordre.

2 Relaxation vers l’équilibre du nombre de Face

Afin de mesurer le désordre d’un état, on classe ces états selon la quantité de pièces
sur Face. On dispose donc de N+1 boîtes dans lesquelles on classe ces états; la boite 0
contient uniquement l’état P P P . . .P et la boîte N contient uniquement l’état FFF . . .F.

On note
(N
k

)
le nombre d’éléments dans la boîte k; on a donc

(N
0
)

= 1 et
(N
N

)
= 1. Par

convention, si k > N , alors
(N
k

)
= 0: il n’y a aucun état à k faces.

Question 5.

1. Montrer que (
N
k

)
=

N !
k!(N − k)!

.

On pourra utiliser (en les démontrant soigneusement) les propriétés suivantes
: k! est le nombre de manières de numéroter k pièces en utilisant les nombres
de 1 à k, et N !

(N−k)! est le nombre de manières de sélectionner successivement et
sans remise k pièces parmi N .

2. En déduire les formules suivantes valables pour tout k et N :(
N
k

)
+
(
N

k + 1

)
=

(
N + 1
k + 1

)
(
N

k + 1

)
=
N − k
k + 1

(
N
k

)
Question 6. Montrer que, si N est pair, alors la boîte N

2 contient strictement plus
d’états que les autres, et que si N est impair, les boîtes N+1

2 et N−1
2 contiennent le

même nombre d’états l’une que l’autre, et strictement plus d’états que les autres.
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Les boîtes k ≈ N
2 contiennent beaucoup d’états, donc au fur et à mesure que le jeu

progresse, il est d’autant plus probable que l’état appartiendra à l’une de ces boîtes.
Dans le fichier entropie.ipynb associé à ce DM, on a codé une fonction NB_Face().

Cette fonction prend deux paramètres en entrée, plus un paramètre optionnel :

• Un entier N , le nombre de pièces.

• Un entier T , le temps maximal de la simulation.

• Un entier k, le nombre de pièces sur Face au début de la simulation. Si k n’est
pas spécifié, on part de k = 0.

La sortie de cette fonction est le graphique, en fonction du temps 0 ≤ t ≤ T , du
nombre de Face pour une réalisation de ce jeu. La sortie de cette fonction n’est donc
pas déterministe puisque le jeu est de nature probabiliste ; si vous la lancez plusieurs
fois, vous pourrez observer plusieurs graphiques différents.

Question 7. Lancez des simulation pour N relativement petit (quelques centaines).
Observez-vous que le système semble “ attiré” par les configurations où k ≈ N

2 ?
Prendre des temps de simulation assez grands. Quel semble être le lien entre N et le
temps que met le système à être attiré par k ≈ N

2 ?

Question 8. Lancez des simulations pour N grand (plusieurs milliers). Confirmez-
vous votre impression ? Quel type de fonction semble reproduire le comportement
de k en fonction du temps ? Proposer une équation différentielle vérifiée par k

N , et
préciser les valeurs vraisemblables de ses coefficients.

Question 9. Que se passe-t-il quand le nombre de pièces sur face s’approche de N
2

? Observer que, pour des temps dix fois plus grands que N , le système fluctue au-
tour de kN

2 avec une amplitude d’ordre
√
N . Il est conseillé de faire commencer la

simulation à k = N
2 .

Question 10. Application pratique: on dispose de N = 6×1023 pièces, et chaque pièce
est lancée en moyenne ν = 5×106 fois par seconde (ce qui veut dire que le temps qui
passe entre deux lancers de pièce est de 1

Nν ). Au temps initial toutes les pièces sont
sur Pile. Au bout de combien de temps a-t-on au moins 49% des pièces sur Face ?

Dans cette application pratique, le nombre de pièces N est comparable aux nom-
bres de particules dans un gaz dans une boîte ; à température ambiante, chaque par-
ticule passe en moyenne un temps ν entre deux chocs avec d’autres particules.

Il y a donc deux phases: une première phase de relaxation vers l’équilibre, où la
variation de k est d’ordre N , jusqu’à ce que k ≈ N

2 , puis une phase de fluctuations au-
tour de l’équilibre, où k fluctue autour de N

2 avec une amplitude plus petite, d’ordre√
N .
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3 Entropie et relaxation

Dans la partie 2 on a rangé les configurations dans des boîtes. On définit l’entropie
d’une boîte comme le logarithme du nombre de configurations appartenant à cette
boîte:

S(k) = ln
(
N
k

)
.

Question 11. On admet l’approximation suivante, valide pour k et N grands:(
N
k

)
≈ 1
√

2π

√
n√

k(n− k)

nn

kk(n− k)n−k
.

On pose x = k
N ; montrer que

S(k)
N
≈ −x ln(x)− (1− x) ln(1− x).

Représenter graphiquement et étudier cette fonction pour x dans l’intervalle perti-
nent pour ce problème.

Pour une proportion x de Face fixée, l’entropie S est environ proportionnelle au
nombre de pièces N . En particulier, il y a bien plus de configurations pour x = 1

2
que pour les autres valeurs de x, puisque le rapport est une constante positive à la
puissance N .

On s’intéresse maintenant au lien entre la fonction S(k)
N et l’évolution de la fonction

k
N .

Question 12.

1. Supposons qu’on soit dans une boîte k = xN à un certain instant t, avec x ∈ [0,1].
Montrer que les probabilités d’être dans la boîte ℓ à l’instant suivant sont

x
2

si ℓ = k − 1
1
2

si ℓ = k
1− x

2
si ℓ = k + 1.

2. En déduire qu’en moyenne, entre t et t + 1, x a augmenté de (1
2 − x) 1

N .

3. Inspiré par la question 7, on introduit une échelle de temps macroscopique
τ = t/N . Montrer que

dx
dτ

=
1
2
− x.

4. Résoudre cette équation différentielle. Cela concorde-t-il avec les observations
numériques précédentes ?

5. Montrer que l’entropie est une fonction croissante du temps :

dS
dτ
≥ 0

et que l’unique point d’équilibre (stable) de l’équation différentielle précédente
coïncide avec l’unique maximum de la fonction S. Interpréter ce résultat.
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