Séance a distance 5
L'entropie

1 Introduction

L'objet de cette séance est 'introduction et I’étude d’une quantité physique, ’entropie.

L'entropie apparait dans des contextes ou on a un désordre apparent. Ce désor-
dre peut étre dii a un facteur probabiliste dans la dynamique (par exemple, dans
une chaine de Markov, I’évolution n’est pas du tout déterministe), ou bien a une dy-
namique déterministe mais chaotique (comme pour la suite logistique, si on choisit
r = 4). Elle est néanmoins plus facile a appréhender dans un contexte probabiliste, et
c’est dans ce contexte que nous allons nous placer.

On considere N piéces de monnaie parfaitement équilibrées. Chacune de ces pieces,
quand on la lance, retombe sur pile avec probabilité %, et sur face avec probabilité %

Initialement, chacune des pieces de monnaie est sur pile. Puis, on joue au jeu
suivant: on choisit une piece au hasard (chaque piece a la méme probabilité d’étre
choisie), on la lance, on la repose a sa place, et on note, pour chaque piece, si elle est
maintenant sur pile ou sur face.

Pour N =2, par exemple, on peut jouer a ce jeu et obtenir le résultat suivant:

PP FP FF FP FP PP PP

Question 1. Montrer que, pour tout N € N, ce jeu est une chaine de Markov avec 2V
états.

Représenter graphiquement cette chaine de Markov pour N =1, N =2 et N = 3.
(Indice : c’est un dessin dans RV )

On appellera maintenant “état” des pieces la donnée, pour chaque piéce, de si elle
est sur pile ou sur face. Les états pour deux piéces sont donc PP, PF,FP et FF.

Question 2. Montrer que cette chaine de Markov est irréductible et apériodique. En
déduire qu’elle admet une unique loi d’équilibre.

Question 3.

1. Montrer que la loi d’équilibre u vérifie, pour tout site i,

| 1 N
pi) = #(j tels que i ~ j) ;‘M(])'

ou i ~ j signifie que le site i est relié directement au site j mais i # j (autrement
dit, i différe de j par exactement une lettre).



2. En déduire que p est la loi uniforme: u(i) = p(j) pour tous les sites i et j. (Indice
: considérer un site i maximal: p(i) > u(j) pour tout j ; établir que tous les
voisins de i sont également maximaux ; conclure).

Question 4. On prend N = 25. Apres avoir joué a ce jeu pendant tres longtemps,
lequel de ces deux états vous parait le plus typique ? Lequel est le plus probable ?
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Au vu de la question 3, on pourrait remplacer ce jeu par un autre, encore plus
simple: a chaque tour, on lance toutes les pieces en méme temps. Apres un tour, tous
les états apparaissent avec la méme probabilité; en particulier, les états présentés
dans la question 4 sont équiprobables. Pourtant, I'intuition nous dit que 1’état de
droite est plus vraisemblable, car il est plus désordonné.

L'entropie consiste en une mesure de ce désordre.

2 Relaxation vers l'équilibre du nombre de Face

Afin de mesurer le désordre d’un état, on classe ces états selon la quantité de pieces
sur Face. On dispose donc de N +1 boites dans lesquelles on classe ces états; la boite 0
contient uniquement I’état PPP... P et la boite N contient uniquement I’état FFF...F.

On note (I,\j) le nombre d’éléments dans la boite k; on a donc (I(\)I) =1let (%) =1. Par

convention, si k > N, alors (I,\(]) =0: il n’y a aucun état a k faces.
Question 5.

1. Montrer que

N\ N
(k)_k!(N—k)!'

On pourra utiliser (en les démontrant soigneusement) les propriétés suivantes
: k! est le nombre de manieres de numéroter k pieces en utilisant les nombres
delak,et (NL—'k)' est le nombre de maniéres de sélectionner successivement et
sans remise k pieces parmi N.

2. En déduire les formules suivantes valables pour tout k et N:

[l ()
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Question 6. Montrer que, si N est pair, alors la boite % contient strictement plus

d’états que les autres, et que si N est impair, les boites N;l et % contiennent le

méme nombre d’états l'une que 'autre, et strictement plus d’états que les autres.




Les boites k ~ % contiennent beaucoup d’états, donc au fur et a mesure que le jeu
progresse, il est d’autant plus probable que I’état appartiendra a I'une de ces boites.

Dans le fichier entropie.ipynb associé a ce DM, on a codé une fonction NB_Face().
Cette fonction prend deux parametres en entrée, plus un parametre optionnel :

* Un entier N, le nombre de piéces.
* Un entier T, le temps maximal de la simulation.

* Un entier k, le nombre de pieces sur Face au début de la simulation. Si k n’est
pas spécifié, on part de k = 0.

La sortie de cette fonction est le graphique, en fonction du temps 0 <t < T, du
nombre de Face pour une réalisation de ce jeu. La sortie de cette fonction n’est donc
pas déterministe puisque le jeu est de nature probabiliste ; si vous la lancez plusieurs
fois, vous pourrez observer plusieurs graphiques différents.

Question 7. Lancez des simulation pour N relativement petit (quelques centaines).
Observez-vous que le systéme semble “ attiré” par les configurations ou k ~ % ?
Prendre des temps de simulation assez grands. Quel semble étre le lien entre N et le
temps que met le systeme a étre attiré par k = % ?

Question 8. Lancez des simulations pour N grand (plusieurs milliers). Confirmez-
vous votre impression ? Quel type de fonction semble reproduire le comportement
de k en fonction du temps ? Proposer une équation différentielle vérifiée par %, et
préciser les valeurs vraisemblables de ses coefficients.

Question 9. Que se passe-t-il quand le nombre de pieces sur face s’approche de %
? Observer que, pour des temps dix fois plus grands que N, le systéeme fluctue au-
tour de k% avec une amplitude d’ordre VN. Il est conseillé de faire commencer la
simulation a k = %

Question 10. Application pratique: on dispose de N = 6x1023 piéces, et chaque piéce

est lancée en moyenne v = 5 x 10° fois par seconde (ce qui veut dire que le temps qui
passe entre deux lancers de piece est de %) Au temps initial toutes les pieces sont
sur Pile. Au bout de combien de temps a-t-on au moins 49% des pieces sur Face ?

Dans cette application pratique, le nombre de pieces N est comparable aux nom-
bres de particules dans un gaz dans une boite ; a température ambiante, chaque par-
ticule passe en moyenne un temps v entre deux chocs avec d’autres particules.

Il y a donc deux phases: une premieére phase de relaxation vers I’équilibre, ou la
variation de k est d’ordre N, jusqu’a ce que k = %, puis une phase de fluctuations au-
tour de ’équilibre, ou k fluctue autour de % avec une amplitude plus petite, d’ordre

VN.



3 Entropie et relaxation

Dans la partie 2 on a rangé les configurations dans des boites. On définit l'entropie
d’une boite comme le logarithme du nombre de configurations appartenant a cette

boite:
N
S(k)=1 .
=)
Question 11. On admet 'approximation suivante, valide pour k et N grands:

(N)~ 1 \n n"
k| Var \Jk(n—k) kk(n—knk’

On pose x = %; montrer que

S(k) _
N = —xIn(x) - (1 —x)In(1 —x).

Représenter graphiquement et étudier cette fonction pour x dans l'intervalle perti-
nent pour ce probléme.

Pour une proportion x de Face fixée, 'entropie S est environ proportionnelle au
nombre de pieces N. En particulier, il y a bien plus de configurations pour x = %
que pour les autres valeurs de x, puisque le rapport est une constante positive a la
puissance N.

On s’intéresse maintenant au lien entre la fonction %k) et ’évolution de la fonction

k

N
Question 12.
1. Supposons qu’on soit dans une boite k = xN a un certain instant ¢, avec x € [0, 1].
Montrer que les probabilités d’étre dans la boite £ a I'instant suivant sont

1_
Xsil=k+1.
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2. En déduire qu’en moyenne, entre t et t + 1, x a augmenté de (% - x)%

3. Inspiré par la question 7, on introduit une échelle de temps macroscopique

T =t/N. Montrer que

dx_1_
dr 2 7

4. Résoudre cette équation différentielle. Cela concorde-t-il avec les observations
numeériques précédentes ?

5. Montrer que I’entropie est une fonction croissante du temps :
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et que I'unique point d’équilibre (stable) de ’équation différentielle précédente
coincide avec I'unique maximum de la fonction S. Interpréter ce résultat.



