
Séance 1

Le pendule simple – Récapitulatif

1 Modélisation et équations du mouvement

On considère une masse attachée à une tige rigide, de longueur L fixe, dont l’autre
extrémité est fixée ; cette tige peut pivoter librement selon un axe, et on souhaite
étudier le mouvement de la masse, qui est par ailleurs soumise à un champ de gravité
uniforme d’intensité g.

La position du pendule, attaché à la tige, est donc complètement décrite par l’angle
θ (algébrique, c’est-à-dire, potentiellement négatif) que forme la tige avec la verticale
(voir Figure 1). En supposant que les effets de la friction sont négligeables, le mouvement
est régi par l’équation suivante, qui est une équation différentielle du second ordre :

Lθ′′(t) = −g sin(θ(t)). (1)

Si, à un instant donné t0, on connaît la position du pendule θ(t0), et sa vitesse,
donnée par θ′(t0), alors la position et la vitesse du pendule sont déterminés pour tous
les temps t ∈ R. Réciproquement, les variables θ(t0) et θ′(t0) sont indépendantes : on
peut librement choisir la valeur de θ et θ′ au moment où on « lance » le pendule.
Ainsi, θ et θ′ sont des variables indépendantes qui décrivent complètement le système.

2 Portrait de phases

Malheureusement, l’équation (1) est difficile à résoudre ; en fait, un théorème affirme
que les solutions de cette équation, en général, ne sont pas données par des formules
(aussi compliquées soient-elles) impliquant uniquement les fonctions usuelles, y compris
√, ln, exp, cos et sin.

Figure 1 – Le pendule simple
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Figure 2 – Le portrait de phase du pendule simple

Pour étudier cette équation, on utilise une propriété cruciale du système : l’énergie
totale E est une quantité conservée. Si on pose en effet

E =
L
2
θ′(t)2 − g cos(θ(t)),

alors, sous réserve que la fonction t 7→ θ(t) satisfasse l’équation (1), on a

dE
dt

= Lθ′(t)θ′′(t) + gθ′(t)sin(θ(t)) = θ′(t)[Lθ′′(t) + g sin(θ(t))] = 0.

Si on fixe θ(t0) et θ′(t0), alors non seulement E(t) est déterminé pour tout t ∈ R, mais
est égale à E(t0). Ceci impose une contrainte sur θ(t) et θ′(t) (puisqu’en les choisissant
librement, on va obtenir une énergie E(t) différente de E(t0)). Pour visualiser cette
contrainte, on dessine le portrait de phase du pendule (figure 2), c’est-à-dire, les
courbes de niveau de l’énergie E dans le plan donné par les valeurs possibles de θ(t)
et θ′(t).

Le profil de l’énergie E, dans le plan donné par θ et θ′, possède des « cuvettes »autour
des points de la forme (θ = 2kπ,θ′ = 0) pour k ∈ Z, et des « cols »autours des points
de la forme (θ = (2k + 1)π,θ′ = 0) pour k ∈ Z.

3 Description de la dynamique

Les sommets des cols et les fonds des cuvettes sont des points d’équilibre du
système, c’est-à-dire, des points θ(t0),θ′(t0) desquels (en t0) on ne bouge pas avec le
temps. Ceci implique bien entendu θ′(t0) = 0 et θ′′(t0) = 0, et en vertu de l’équation
(1), on obtient θ′ = 0,θ = kπ,k ∈ Z. Le fait que k soit pair ou impair détermine si le
point en question est le fond d’une cuvette ou le sommet d’un col.

En-dehors des points d’équilibre, la dynamique est fortement prescrite par le fait
que E soit constante. Imaginons que le point du plan (θ(t0),θ′(t0)) soit situé sur la
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courbe bleue qui ressemble à un cercle centré en (0,0). Puisque E est préservé et
que le mouvement est continu, alors à tout instant, (θ(t),θ′(t)) se trouvera également
sur cette courbe bleue. L’évolution temporelle consiste alors en un mouvement sur
la courbe bleue, qui ne s’arrête jamais (si on s’arrête, c’est forcément à un point
d’équilibre décrit plus haut, or aucun de ces points n’est sur la courbe bleue), donc
l’évolution temporelle consiste à faire des tours de la courbe bleue. Le mouvement
est périodique ! Il en va de même pour tout point initial situé dans la cuvette, c’est-
à-dire, de tout point pour lequel −g < E < g.

De manière similaire, si (θ(t0),θ′(t0)) est situé sur la coube jaune-verte la plus en
haut de la figure 1, alors en tout temps (θ(t),θ′(t)) sera sur cette même courbe, et
le mouvement consiste à parcourir cette courbe (qui, en réalité, se referme sur elle-
même, puisqu’en θ = 2π on est revenu à θ = 0) de manière périodique. Il en va de
même pour toute trajectoire hors de la cuvette, c’est-à-dire, toute trajectoire d’énergie
E > g.

Il reste encore à déterminer la trajectoire dans le cas où (θ(t0),θ(t0)) se situe sur le
bord de la cuvette, c’est-à-dire, par exemple, sur la fine courbe bleue qui joint (−π,0)
et (π,0) en passant par les θ′ positifs. Cette trajectoire d’énergie g n’atteint jamais
les points du col (−π,0) ou (π,0), puisqu’en ces points on ne bouge pas du tout. La
trajectoire reste donc nécessairement sur la courbe bleue, et quand t tend vers l’infini,
(θ(t),θ′(t)) tend vers le point (π,0).

On a décrit complètement le système. En-dehors des points d’équilibre, toutes
les trajectoires sont périodiques sauf celles d’énergie E = g. Ce comportement non-
périodique, de même que le point d’équilibre au sommet du col, sont instables :
une trajectoire initialement très proche de la courbe bleue va avoir un comportement
très différent (elle sera périodique). En revanche, le point d’équilibre au fond de la
cuvette est stable : une trajectoire initialement très proche du fond de la cuvette (par
exemple, sur la courbe bleue) restera très proche du fond de la cuvette en tout temps.

La distinction entre des comportements stables et des comportements instables
est cruciale en physique : puisque dans le système de départ, on ne peut mesurer,
déterminer, ou contrôler θ(t) et θ′(t) que de manière approximative, un comportement
valide uniquement pour la donnée exacte (θ(t),θ′(t)) ne va jamais être observé expérimentalement.
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