
Espaces des phases à deux paramètres

Récapitulatif

1 Cadre

Le principe fondamental de la dynamique, appliqué à un objet ponctuel se déplaçant
sur une droite et soumis à une force F ne dépendant que de la position, est une
équation différentielle du second ordre :

ẍ(t) = F(x(t)).

Pour étudier le problème, il est utile d’introduire explicitement la vitesse, et de transformer
cette équation en un système différentiel du premier ordre :

ẋ(t) = v(t) (1)

v̇(t) = F(x(t)). (2)

En effet, la connaissance de x et de v à un moment donné (condition initiale) détermine
toute l’évolution future du système. On représente l’état du système à chaque instant
dans le plan de phase qui est le plan des valeurs possibles de x et v. L’évolution du
système possède alors souvent une interprétation géométrique agréable.

1.1 Exemple : l’oscillateur harmonique (Exo 3)

On considère le cas d’une force de rappel F(x) = −x correspondant à la loi de
Hooke. Le système s’écrit

ẋ(t) = v(t)

v̇(t) = −x(t).

La solution de ce système est donnée par

ẋ(t) = Rcos(−t +φ)

v̇(t) = Rsin(−t +φ),

où (r,−φ) sont les coordonnées polaires de (x(0),v(0)). Autrement dit, dans l’espace
des phases, l’évolution du système est la suivante : le point (x(t),v(t)) reste toujours
sur un même cercle centré en 0 (de centre r), et tourne autour de 0 dans le sens des
aiguilles d’une montre.
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On peut vérifier à la main que la solution convient ; on verra dans le DM2 une
méthode générale de résolution des équations différentielles linéaires.

1.2 Exemple : le pendule simple (séance 1)

Le système différentiel pour le pendule simple s’écrit

ẋ(t) = v(t)

v̇(t) = −sin(x(t)).

Malheureusement, on ne peut pas exprimer les solutions de cette équation à l’aide des
fonctions élémentaires (polynômes, racines, exp, sin, cos, ln, ...). L’étude des solutions
de cette équation commence par la mise en évidence de quantités conservées, en
l’occurence l’énergie mécanique totale. L’énergie cinétique dans ce problème est

K(t) =
1
2
v(t)2

et l’énergie potentielle est
V (t) = −cos(x(t)).

On peut démontrer (cf Section 2) que l’énergie totale est conservée :

d
dt

(K(t) +V (t)) = 0.

Ce sera le cas en général pour des systèmes de la forme (1), où on choisit V comme
une primitive de −F.
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L’évolution du système dans le plan de phase est donc contrainte sur des courbes
{12v

2 − cos(x) = C}. On peut dessiner ces courbes d’une manière ou d’une autre (on
verra en Section 3 comment les dessiner), et déterminer complètement l’évolution du
système (cf Section 3.3). On trouve que presque toutes les trajectoires sont périodiques,
sauf celles qui tendent vers un point d’équilibre instable (et qui ne se produisent
jamais physiquement).

2 Calcul différentiel et quantités conservées

Le but de cette section est de familiariser avec la notion de dérivée quand il y a
plusieurs quantités qui évoluent en même temps. On parle notamment de la formule
des dérivées totales et on montre comment s’en servir.

2.1 La formule des dérivées totales (Exo 1)

On connaît bien la formule de la dérivée d’une composée. Si une quantité f est
une fonction de x, qui elle-même dépend de t, alors la variation de f par rapport au
temps peut s’écrire de ces trois manières suivantes :

ḟ (t) =
df
dt

= (f ◦ x)′(t).

La formule donne alors
ḟ (t) = f ′(x(t))ẋ(t).

Le premier terme à droite, f ′(x(t)), est bien la dérivée de y par rapport à x, évaluée
en x(t). Avec la convention « fraction », cela s’écrit encore

df
dt

=
df
dx

dx
dt
.

Il ne faut pas toujours ce fier à la forme « fractionnaire » de cette notation, comme
illustré par la formule des dérivées totales plus bas.

Imaginons maintenant une expression H où interviennent deux quantités x(t) et
y(t), par exemple l’énergie totale H(x(t), y(t)) = 1

2y(t)2 + V (x(t)) où y est la vitesse.
Pour étudier comment cette expression varie en fonction du temps, il faut introduire
les dérivées partielles

�H

�x
= dérivée de H par rapport à x avec y fixée

�H

�y
= dérivée de H par rapport à y avec x fixée.

Dans l’exemple précédent on a

�H

�x
= V ′(x(t))

�H

�y
= y(t).
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La formule des dérivées totales est alors

dH
dt

=
�H

�x

dx
dt

+
�H

�y

dy
dt
. (3)

Intuitivement, si H dépend de deux quantités x et y, pour savoir comment H change
avec le temps, il faut sommer la manière dont H bouge à cause de x et la manière
dont H bouge à cause de y. L’exemple H = 1

2y(t)2 +V (x(t)) donne

dH
dt

= y(t)ẏ(t) +V ′(x(t))ẋ(t).

Ici, il faut prendre garde à ne pas simplifier les fractions ! D’ailleurs, on a fait la
différence entre la notation dx et �x.

2.2 Comment montrer qu’une quantité est conservée (Exo 2)

Une quantité est conservée quand sa dérivée par rapport au temps est nulle.
Pour une quantité dépendant de x et v, on peut appliquer la formule des dérivées

totales (3) et remplacer ẋ(t) et v̇(t) par leurs valeurs.
Avec H(x(t),v(t)) = 1

2v(t)2 +V (x(t)), on a déjà vu que

dH
dt

= v(t) ˙v(t) +V ′(x(t))ẋ(t).

En remplaçant ˙v(t) et ˙x(t) grâce à l’équation différentielle, on obtient

dH
dt

= v(t)[F(x(t)) +V ′(x(t))].

Ainsi, si le potentiel V est une primitive de −F, le terme entre crochets est nul et on
a bien

dH
dt

= 0.

3 Dessine-moi un portrait de phase

3.1 Points d’équilibre stables et instables

L’analyse de l’équation différentielle ... commence par la recherche des points d’équilibre :
les configurations où le système est immobile. Autrement dit, il s’agit des points où
la force est nulle, donc les points où la dérivée du potentiel est nulle. Typiquement,
ces points sont de deux sortes : ceux qui sont en bas d’une cuvette, et ceux qui sont en
haut d’une montagne. Le système se comporte très différemment près de ces points,
et le dessin du portrait de phase va mettre cette différence en évidence.

On a déjà remarqué plus haut (Section 1.1) que si V (x) = x2

2 (primitive de −F(x) =
x) alors le mouvement est contraint à des cercles de rayon 0. On vérifie que les
ensembles {v2

2 + x2

2 = C} sont tous des cercles de rayon
√

2C.
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Si le potentiel présente une « cuvette » à un endroit, avec un minimum local en un
point x0, alors les courbes d’énergie constante, près de x = x0 et v = 0, vont être des
ronds concentriques autour de ce point.

En particulier, si on choisit un point initial proche de x = x0,v = 0, il va rester sur
un petit rond, et ne jamais s’éloigner de ce point ; l’équilibre est stable.

On peut aussi dessiner complètement les courbes dans le cas V (x) = −x2

2 d’un
« sommet » du potentiel. Les courbes {v2

2 −
x2

2 = C} sont de trois types.

1. Cas C = 0 (séparatrice) : on a v2 = x2 donc v = ±x (attention au signe !). Les
courbes sont les deux droites de pente 1 et −1, qui se croisent en 0.

2. Cas C > 0 : on a v2 = 2C + x2 donc v = ±
√

2C + x2 est, à un signe près, une
fonction de x bien définie (2C + x2 est toujours positive). Le graphe de ces
fonctions est une branche d’hyperbole.

3. Cas C < 0 : cette fois-ci on écrit x2 = −2C + v2 et donc x = ±
√
−2C + v2 est

encore, à un signe près, une fonction de v bien définie car −2C +v2 est toujours
positive. Le graphe de ces fonctions est une autre branche d’hyperbole, mais
tournée d’un quart de tour par rapport à C > 0.

Le point d’équilibre x = 0,v = 0 est instable : certes, certaines trajectoires pour C = 0
tendent vers ce point d’équilibre, mais les trajectoires voisines sont repoussées.
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3.2 Dessiner les courbes d’énergie

On se donne un profil de potentiel pour lequel on souhaite dessiner les coubres
d’énergies dans le plan (x,v) (étape 1).

On commence par marquer les puits et les sommets de V ; ces valeurs de x vont
toutes correspondre à des points d’équilibre avec v = 0. Ceux dans les puits sont
stables, ceux sur les sommets sont instables.

Les points bleus correspondent à des points stables, on dessine des petites trajectoires
circulaires autour. Pour les points rouges, on dessine le début des séparatrices (C=0).

On complète le dessin des séparatrices en commençant par celle correspondant
à la plus petite valeur de V . On détermine sa zone d’influence (intervalle en espace
que peut visiter une particule dans une configuration initiale très proche). On dessine
ensuite un 8 couché dont les sommets correspondent aux bornes de la zone d’influence.

On fait de même pour les autres séparatrices. Les courbes sont imbriquées les unes
dans les autres, elles ne doivent pas se croiser.

Pour finir on dessine quelques courbes régulières (à des valeurs d’énergie qui ne
correspondent pas à des séparatrices). Encore une fois les courbes ne se croisent pas.
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Etape 1 :
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Etape 2 :
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Etape 3 :
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Etape 4 :
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Etape 5 :
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Etape 6 :

3.3 Description complète de la dynamique

On a vu en faisant le dessin que l’espace des phases contient un nombre fini de
séparatrices associées à des points d’équilibre instables ; les autres courbes d’énergie
sont soit des courbes régulières (sans point de croisement) soit des points d’équilibre
stables. Puisque la trajectoire reste sur chaque courbe, on en déduit que pour presque
toutes les conditions initiales, le mouvement est périodique. Si la configuration initiale
est exactement sur une séparatrice, alors l’état du système converge vers un point
d’équilibre instable.
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4 Exercices complémentaires

Exercice 1. Utiliser la formule des dérivées totales pour calculer les dérivées des
quantitées suivantes par rapport au temps ; vérifier votre calcul en remplaçant directement
x(t) et y(t) par leurs expressions avant de dériver.

cos(x(t))− ey(t) x(t) = ln(t) y(t) = sin(t).

x(t)y(t) x(t) = cos(t) y(t) = t2.

ex(t)y(t) x(t) = t2 y(t) =
1
t
.

Exercice 2. (Examen 2021) On considère le système différentiel

ṡ(t) = −R0i(t)s(t)

i̇(t) = R0i(t)s(t)− i(t).

Montrer que la quantité

H(i(t), s(t)) = R0(i(t) + s(t))− ln(s(t))

est conservée.

13


