Espaces des phases a deux parameétres
Récapitulatif

1 Cadre

Le principe fondamental de la dynamique, appliqué a un objet ponctuel se déplagant
sur une droite et soumis a une force F ne dépendant que de la position, est une
équation différentielle du second ordre :

Pour étudier le probleme, il est utile d’introduire explicitement la vitesse, et de transformer
cette équation en un systéme différentiel du premier ordre :

xX(t) = v(t) (1)
v(t) = F(x(t)). (2)

En effet, la connaissance de x et de v a un moment donné (condition initiale) détermine
toute I’évolution future du systeme. On représente I’état du systeme a chaque instant
dans le plan de phase qui est le plan des valeurs possibles de x et v. L'évolution du
systéme possede alors souvent une interprétation géométrique agréable.

1.1 Exemple : l'oscillateur harmonique (Exo 3)

On consideére le cas d’une force de rappel F(x) = —x correspondant a la loi de
Hooke. Le systeme s’écrit

La solution de ce systéeme est donnée par

x(t) = Rcos(—t + ¢)
v(t) = Rsin(—t + ¢),

ou (r,—¢) sont les coordonnées polaires de (x(0),v(0)). Autrement dit, dans I’espace
des phases, I’évolution du systeme est la suivante : le point (x(t),v(t)) reste toujours
sur un méme cercle centré en 0 (de centre r), et tourne autour de 0 dans le sens des
aiguilles d’une montre.



On peut vérifier a la main que la solution convient; on verra dans le DM2 une
méthode générale de résolution des équations différentielles linéaires.

1.2 Exemple : le pendule simple (séance 1)

Le systeme différentiel pour le pendule simple s’écrit

v(t) = —sin(x(t)).

Malheureusement, on ne peut pas exprimer les solutions de cette équation a I’aide des
fonctions élémentaires (polynomes, racines, exp, sin, cos, In, ...). L'étude des solutions
de cette équation commence par la mise en évidence de quantités conservées, en
l'occurence I’énergie mécanique totale. L’énergie cinétique dans ce probleme est

et I’énergie potentielle est
V(t) = —cos(x(t)).

On peut démontrer (cf Section 2) que I’énergie totale est conservée :

d
S K+ vn)=o.

Ce sera le cas en général pour des systemes de la forme (1), ou on choisit V comme
une primitive de —F.



L’évolution du systeme dans le plan de phase est donc contrainte sur des courbes
{%v2 —cos(x) = C}. On peut dessiner ces courbes d’'une maniere ou d’une autre (on
verra en Section 3 comment les dessiner), et déterminer completement I’évolution du
systeme (cf Section 3.3). On trouve que presque toutes les trajectoires sont périodiques,
sauf celles qui tendent vers un point d’équilibre instable (et qui ne se produisent
jamais physiquement).

2 Calcul différentiel et quantités conservées

Le but de cette section est de familiariser avec la notion de dérivée quand il y a
plusieurs quantités qui évoluent en méme temps. On parle notamment de la formule
des dérivées totales et on montre comment s’en servir.

2.1 La formule des dérivées totales (Exo 1)

On connait bien la formule de la dérivée d’'une composée. Si une quantité f est
une fonction de x, qui elle-méme dépend de ¢, alors la variation de f par rapport au
temps peut s’écrire de ces trois manieres suivantes :

fiy="L = (o

La formule donne alors _
f(t) = f(x(2)x(t).

Le premier terme a droite, f’(x(t)), est bien la dérivée de y par rapport a x, évaluée
en x(t). Avec la convention « fraction », cela s’écrit encore

df df dx

dt ~ dx dt’
I1 ne faut pas toujours ce fier a la forme « fractionnaire » de cette notation, comme
illustré par la formule des dérivées totales plus bas.

Imaginons maintenant une expression H ou interviennent deux quantités x(t) et
y(t), par exemple I'énergie totale H(x(t),y(t)) = %y(t)2 + V(x(t)) ou y est la vitesse.
Pour étudier comment cette expression varie en fonction du temps, il faut introduire
les dérivées partielles

%—Ij = dérivée de H par rapport a x avec p fixée
oH _ . . s -
@ = dérivée de H par rapport a y avec x fixée.
Dans 'exemple précédent on a
JH JH
— V, t —_— = t).
= V() 3, =0



La formule des dérivées totales est alors
dH _9H dx o dy

a T ox dt oy ar ()

Intuitivement, si H dépend de deux quantités x et y, pour savoir comment H change
avec le temps, il faut sommer la maniere dont H bouge a cause de x et la maniere
dont H bouge a cause de y. Lexemple H = %y(t)2 + V(x(t)) donne

dH . , ,
S = PP+ V(x()(E),

Ici, il faut prendre garde a ne pas simplifier les fractions! D’ailleurs, on a fait la
différence entre la notation dx et dx.

2.2 Comment montrer qu’une quantité est conservée (Exo 2)

Une quantité est conservée quand sa dérivée par rapport au temps est nulle.

Pour une quantité dépendant de x et v, on peut appliquer la formule des dérivées
totales (3) et remplacer x(t) et v(t) par leurs valeurs.

Avec H(x(t),v(t)) = %v(t)2 + V(x(t)), on a déja vu que

d .
TI;I = v(t)v(t) + V' (x(t)x(¢).

En remplagant v(t) et x(t) grace a I’équation différentielle, on obtient

dH
S = vF(0) + V()
Ainsi, si le potentiel V est une primitive de —F, le terme entre crochets est nul et on

a bien

dH
o

3 Dessine-moi un portrait de phase

3.1 Points d’équilibre stables et instables

L’analyse de I’équation différentielle ... commence par la recherche des points d’équilibre :
les configurations ou le systéeme est immobile. Autrement dit, il s’agit des points ou
la force est nulle, donc les points ou la dérivée du potentiel est nulle. Typiquement,
ces points sont de deux sortes : ceux qui sont en bas d’une cuvette, et ceux qui sont en
haut d’'une montagne. Le systéme se comporte tres difféeremment pres de ces points,
et le dessin du portrait de phase va mettre cette différence en évidence.
On a déja remarqué plus haut (Section 1.1) que si V(x) = "—22 (primitive de —F(x) =
x) alors le mouvement est contraint a des cercles de rayon 0. On vérifie que les
ensembles {"—22 + x—; = C} sont tous des cercles de rayon V2C.



Si le potentiel présente une « cuvette » a un endroit, avec un minimum local en un
point x(, alors les courbes d’énergie constante, pres de x = x et v = 0, vont étre des
ronds concentriques autour de ce point.

En particulier, si on choisit un point initial proche de x = x(, v = 0, il va rester sur
un petit rond, et ne jamais s’éloigner de ce point; I’équilibre est stable.
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On peut aussi dessiner complétement les courbes dans le cas V(x) = —% d’un

«sommet » du potentiel. Les courbes {”—22 - x—; = C} sont de trois types.

1. Cas C = 0 (séparatrice) : on a v> = x> donc v = +x (attention au signe!). Les

courbes sont les deux droites de pente 1 et —1, qui se croisent en 0.

2. Cas C>0:o0nav?=2C+x?doncv=+V2C+x2 est, & un signe prés, une
fonction de x bien définie (2C + x? est toujours positive). Le graphe de ces
fonctions est une branche d’hyperbole.

3. Cas C < 0 : cette fois-ci on écrit x> = —2C + v? et donc x = +V-2C +v? est
encore, a un signe pres, une fonction de v bien définie car —2C +v? est toujours
positive. Le graphe de ces fonctions est une autre branche d’hyperbole, mais
tournée d’un quart de tour par rapporta C > 0.
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Le point d’équilibre x = 0,v = 0 est instable : certes, certaines trajectoires pour C =0
tendent vers ce point d’équilibre, mais les trajectoires voisines sont repoussées.
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3.2 Dessiner les courbes d’énergie

On se donne un profil de potentiel pour lequel on souhaite dessiner les coubres
d’énergies dans le plan (x,v) (étape 1).

On commence par marquer les puits et les sommets de V' ; ces valeurs de x vont
toutes correspondre a des points d’équilibre avec v = 0. Ceux dans les puits sont
stables, ceux sur les sommets sont instables.

Les points bleus correspondent a des points stables, on dessine des petites trajectoires
circulaires autour. Pour les points rouges, on dessine le début des séparatrices (C=0).

On complete le dessin des séparatrices en commencant par celle correspondant
a la plus petite valeur de V. On détermine sa zone d’influence (intervalle en espace
que peut visiter une particule dans une configuration initiale tres proche). On dessine
ensuite un 8 couché dont les sommets correspondent aux bornes de la zone d’influence.

On fait de méme pour les autres séparatrices. Les courbes sont imbriquées les unes
dans les autres, elles ne doivent pas se croiser.

Pour finir on dessine quelques courbes régulieres (a des valeurs d’énergie qui ne
correspondent pas a des séparatrices). Encore une fois les courbes ne se croisent pas.
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Etape 4:
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Etape 5:
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Etape 6:
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3.3 Description compléte de la dynamique

On a vu en faisant le dessin que 'espace des phases contient un nombre fini de
séparatrices associées a des points d’équilibre instables; les autres courbes d’énergie
sont soit des courbes réguliéres (sans point de croisement) soit des points d’équilibre
stables. Puisque la trajectoire reste sur chaque courbe, on en déduit que pour presque
toutes les conditions initiales, le mouvement est périodique. Sila configuration initiale
est exactement sur une séparatrice, alors 1’état du systeme converge vers un point
d’équilibre instable.
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4 Exercices complémentaires

Exercice 1. Utiliser la formule des dérivées totales pour calculer les dérivées des
quantitées suivantes par rapport au temps; vérifier votre calcul en remplacant directement
x(t) et y(t) par leurs expressions avant de dériver.

cos(x(t)) — e¥) x(t)=1In(t)  y(t) =sin(t).
x()y(t) x(t)=cos(t)  p(t)=t>
eXDy(t) x(t) = t2 y(t) = %

Exercice 2. (Examen 2021) On consideére le systeme différentiel

§(t) = —Roi(t)s(t)
i(t) = Ryi(t)s(t) —i(t).

Montrer que la quantité
H{(i(t),s(t)) = Ro(i(t) + 5(t)) = In(s(t))

est conservée.
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