
EXERCISE CLASS: WAVEFRONT SET OF
DISTRIBUTIONS, SYMBOLS AND OSCILLATORY

INTEGRALS

Distributions

Exercise 1. Let F1, F2 be two Fréchet spaces. What does it mean for a
linear map u : F1 → F2 to be continuous?

Exercise 2. Let u ∈ E ′(Rn). Show that there exists C,M > 0 such that:

∀ξ ∈ Rn, |û(ξ)| ≤ C〈ξ〉M .

Exercise 3. The principal value of 1/x is defined as the distribution vp(1/x) :

C∞comp(R)→ C such that:

vp(1/x) : ϕ 7→ lim
ε→0+

∫
R\[−ε,ε]

ϕ(x)

x
dx.

(1) What is supp (vp(1/x))?
(2) What is the order of vp(1/x)?
(3) Compute WF(vp(1/x)).

Exercise 4. Let δRk be the Dirac mass on the k-plane Rk ×{0} ⊂ Rn, that
is

(δRk , ϕ) :=

∫
Rk
ϕ(x, 0)dx.

(1) Show that WF(δRk) = N∗Rk \ {0}, the conormal to Rk, where

N∗Rk :=
{

((x, 0); ξ) | ∀v ∈ Rk × {0} , (ξ, v) = 0
}

More generally, given E ⊂ Rn a vector subspace of dimension k, we can
define integration on E with respect to an arbitrary smooth measure as
follows

(δE,a, ϕ) :=

∫
Rk
ϕ(Ax)a(x)dx,

where A ∈ O(Rn) is some invertible matrix such that A : Rk → E is an
isometry and the function a ∈ C∞(Rk) defines the density.

(2) Show that δE,a has wavefront set contained in the conormal N∗0E of
E (minus the 0 section), where

N∗E := {(x, ξ) ∈ T ∗Rn | x ∈ E,∀v ∈ E, (ξ, v) = 0} .

(3) Compute exactly WF(δE,a).
1
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Exercise 5. Define for z ∈ C the function xz+ by:

xz+ =

{
0 on (−∞, 0],

exp(z log(•)) on (0,∞).

(1) Show that xz+ defines a distribution on R for <(z) > −1. Compute
its support and its wavefront set.

(2) Show that {<(z) > −1} 3 z 7→ xz+ ∈ D′(R) is holomorphic in the
sense that for all ϕ ∈ C∞comp(R), the function {<(z) > −1} 3 z 7→
(xz+, ϕ) ∈ C is holomorphic.

Our goal is to show that C 3 z 7→ xz+ ∈ D′(R) extends to a meromorphic
family of distributions. This means that there exists a maximal countable
and isolated subset P ⊂ C and a map n : P → Z∗+ such that for all ϕ ∈
C∞comp(R), the function C 3 z 7→ (xz+, ϕ) ∈ C is meromorphic, with poles
contained in P, and of order at most given by n.

For z ∈ C \ Z∗−, define for k > −<(z)− 1:

(pf(xz+), ϕ) := (−1)k
∫ +∞

0

xz+k

(z + 1)...(z + k)
∂kxϕ(x)dx.

(3) Show that the definition of pf(xz+) is independent of k as long as
k > −<(z)− 1. Show that it coincides with xz+ when <(z) > −1.

Let Γ be the Euler function. Recall that Γ(n+ 1) = n! and that Γ admits
a meromorphic extension to C. We define for z ∈ C \ Z∗−:

χz+ :=
pf(xz+)

Γ(z + 1)
.

(4) Show that ∂xχz+ = χz−1
+ in D′(R) for all z ∈ C such that {<(z) > 0}.

(5) Deduce that C 3 z 7→ χz+ ∈ D′(R) is holomorphic.
(6) Conclude that C 3 z 7→ xz+ ∈ D′(R) admits a meromorphic extension

from {<(z) > −1} to C.

Exercise 6. Let f ∈ C∞(X),=(f) ≥ 0, where X ⊂ Rn an open subset. Fix
ε > 0.

(1) Show that

1

f(x) + iε
=

1

i

∫ +∞

0
ei(f(x)+iε)τdτ.

(2) We assume that df(x) 6= 0 when f(x) = 0. Show that the limit
1

f(x) + i0
:= lim

ε→0

1

f(x) + iε

exists in D′(X).
(3) What is singsupp

(
(f(x) + i0)−1

)
?

(4) Compute WF
(
(f(x) + i0)−1

)
.
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(5) For n = 1, show that

1

x± i0
= ∓iπδ0 + vp(1/x), δ0 =

1

2iπ

(
1

x− i0
− 1

x+ i0

)
.

Wavefront set

Exercise 7. Let X be an open subset of Rn and let u ∈ D′(X).
(1) What does it mean for a distribution to be real?
(2) Show that if u is real, then WF(u) is invariant by the action of the

fiberwise antipodal map (x, ξ) 7→ (x,−ξ).
(3) Assume X is such that R(X) = X, where R(x) = −x. What does it

mean for u to be even or odd?
(4) Show that if u is even or odd, then: (x, ξ) ∈ WF(u) iff (−x,−ξ) ∈

WF(u).

Exercise 8: tensor product and wavefront set. Let X ⊂ Rn, Y ⊂ Rm
be open subsets and Γ1 ⊂ T ∗0X,Γ2 ⊂ T ∗0 Y be two closed cones. Show that
the map

C∞(X)⊗ C∞(Y ) 3 (u, v) 7→ u⊗ v ∈ C∞(X × Y ),

extends uniquely to a continuous distribution

D′Γ1
(X)×D′Γ2

(Y ) 3 (u, v) 7→ u⊗ v ∈ D′Γ3
(X × Y )

where:
Γ3 = (Γ1 × Γ2) ∪ (Γ1 ×OY ) ∪ (OX × Γ2).

Exercise 9: multiplication of distributions. Let X ⊂ Rn be an open
subset and let u1, u2 ∈ D′(X).

(1) Define, when possible, the product

D′(X)×D′(X) 3 (u1, u2) 7→ u1 × u2 ∈ D′(X),

as the unique continuous extension of the product C∞(X)×C∞(X)→
C∞(X). Hint: You can either mimic the proof of Lemma 1.1.21 in
the lecture notes (integration of a product of distributions), or use the
previous exercise by considering the embedding map of the diagonal
ι : X → X ×X,x 7→ (x, x) and ι∗(u1 ⊗ u2).

(2) Show that

WF(u1 × u2) ⊂WF(u1) ∪WF(u2) ∪ (WF(u1)⊕WF(u2)). (0.1)

Hint: You can either adapt the proof of Lemma 1.1.21 or use Theo-
rem 1.1.23 (continuous extension of linear operators to distributions).

(3) For x1, x2 ∈ Rn, x1 6= x2, compute δx1 × δx2 . Explain heuristically
why δ2

x1 cannot be well-defined.
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(4) In R2, define

(δx, ϕ) :=

∫
R2

ϕ(x, 0)dx, (δy, ϕ) :=

∫
R2

ϕ(0, y)dy.

Show that δx×δy is well-defined and compute it. Compare WF(δx),WF(δy)

and WF(δx × δy).
(5) Find an example where the inclusion (0.1) is an equality and an

example where it is not.

Exercise 10: pullback and pushforward of distributions. Let X ⊂
Rn, F ⊂ Rm be two open subsets. Let π : X ×F → X be given by π(x, y) =

x. For u ∈ C∞comp(X × F ), f ∈ C∞comp(X), define:

π∗f(x, y) := f(x), π∗u(x) :=

∫
F
u(x, y)dy.

(1) Show that π∗ : E ′(X)→ D′(X×F ) extends continuously and bound
WF(π∗f) in terms of WF(f).

(2) Deduce that π∗ : E ′(X)→ D′Γ(X×F ) extends continuously for some
well-chosen conic subset Γ ⊂ T ∗0 (X × F ).

(3) Show that π∗ : E ′(X × F )→ E ′(X) extends continuously and bound
WF(π∗u) in terms of WF(u).

Exercise 11. Let Mn be a smooth closed oriented n-dimensional manifold
and π : E →M be an oriented fiber bundle, with fiber diffeomorphic to F k,
a closed oriented k-dimensional manifold. Let ωE be a smooth volume form
on E and ωM be a smooth volume form on M .

(1) Recall the definition of a fiber bundle.
(2) Show the existence of ν ∈ C∞(E,ΛkT ∗E) such that ωE = ν∧π∗ωM .

Show that the restriction of ν to each fiber Ex ↪→ E is a (positive)
volume form.

(3) Consider the pullback operator π∗ : C∞(M) → C∞(E), defined by
π∗f(x, v) := f(x). Show that it extends uniquely to a continuous
map π∗ : L2(M,ωM )→ L2(E,ωE).

(4) We let π∗ : L2(E,ωE)→ L2(M,ωM ) be the adjoint of π∗. Compute
π∗.

(5) Show that π∗ : D′(M)→ D′(E) extends continuously. Bound WF(π∗f)

in terms of WF(f).
(6) Show that π∗ : D′(E)→ D′(M) extends continuously. Bound WF(π∗u)

in terms of WF(u).

Exercise 12. LetMn be a smooth closed manifold and letX ∈ C∞(M,TM)

be a smooth vector field. Let (ϕt)t∈R be the flow generated by X. It acts
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by pullback on smooth functions as ϕ∗t : C∞(M) → C∞(M), ϕ∗t f(x) :=

f(ϕt(x)).

(1) Show that ϕ∗t : D′(M)→ D′(M) extends continuously.
(2) Compute WF(ϕ∗t f) in terms of WF(f). Explain this heuristically.

Let χ ∈ C∞(R)comp be a smooth cutoff function. Define the operator

E :=

∫ +∞

−∞
χ(t)ϕ∗tdt.

(3) Compute WF(Eu) in terms of WF(u). Hint: Consider the projection
π : M × R→M,π(x, t) = x.

Exercise 13. Let X ⊂ Rn be an open subset and S ⊂ T ∗0X be a closed
conic subset. Show that there exists u ∈ D′(X) such that WF(u) = S.

Symbols

Exercise 14.

(1) Show that a(x, θ) := 〈θ〉m ∈ Sm(X × RN ).
(2) Let a ∈ C∞(X × RN ) be positively homogeneous of order m for
|θ| ≥ 1, namely a(x, λθ) = λma(x, θ) for all λ ≥ 1, |θ| ≥ 1. Show
that a ∈ Sm1,0(X × RN ).

(3) Let a ∈ C∞(X × RN ) such that for all x ∈ X, a(x, •) has compact
support in RN . Show that a ∈ S−∞(X × RN ).

Exercise 15. Define ξ = (ξ′, ξn) ∈ Rn, ξ′2 =
∑n−1

j=1 ξ
2
j , ξ

2 = ξ′2 + ξ2
n. To

which symbol space do the following belong?

(1) (ξ′2 + iξn)−1,
(2) χ(|ξ|)(ξ′2 + iξn)−1, where χ ∈ C∞(R) is such that χ = 1 for |x| ≥ 1

and χ = 0 for |x| ≤ 1/2,
(3) (ξ2 + 1)−1,
(4) (ξ′2 + 1)−1,
(5) eiξ2 ,
(6) eix·ξ.

Exercise 16. Assume that a ∈ Smρ,0(X ×RN ) with m < 0 and ρ > 1. Show
that a ∈ S−∞(X × RN ).

Hint: Apply |θ|∂θ many times and then integrate by parts to recover the
expression of a.
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Exercise 17: Borel’s theorem. The goal of this exercise is to show the
following:

Theorem 0.1 (Borel). For every sequence (aα)α∈Nn of complex numbers
aα ∈ C, there exists u ∈ C∞(Rn) such that ∂αu(0) = aα.

Let χ ∈ C∞(Rn, [0, 1]) be such that χ = 0 for |x| ≥ 1 and χ = 1 for
|x| ≤ 1. Define for λ > 0:

uN (x, λ) := χ(λx)
∑
|α|=N

aα
α!
xα.

(1) Compute ∂βxuN (0).
(2) Show that ‖uN (x, λ)‖CN−1 ≤ 2−N if λ ≥ λN , where λN is chosen

large enough.
(3) Show that u(x) :=

∑
N≥0 uN (x, λN ) solves the problem.

Oscillatory integrals

Exercise 18: The Cauchy problem for the wave equation. We con-
sider the following Cauchy problem for the wave equation:{

∂2
t f −∆f = 0

f(t = 0) = 0, ∂tf(t = 0) = u,
(0.2)

where u ∈ C∞comp(Rn).
(1) Show existence and uniqueness of a solution f ∈ C∞([0,∞),S(Rn))

for (0.2) if u ∈ C∞comp(Rn).
(2) Show that for all t ≥ 0, x ∈ Rn:

f(t, x) =

∫
Rnξ

∫
Rny
ei(x−y)·ξ(2i|ξ|)−1(eit|ξ| − e−it|ξ|)u(y)dydξ

We let χ ∈ C∞(Rn) be a smooth cutoff function such that χ = 0 near
ξ = 0 and χ = 1 for |ξ| ≥ 1. We decompose the solution as

f(t, x) = f+(t, x) + f−(t, x) + k(t, x),

where

f±(t, x) = ±
∫
Rnξ

∫
Rny
ei(x−y)·ξ(2i|ξ|)−1e±it|ξ|χ(ξ)u(y)dydξ =: F±(t)u

k(t, x) =

∫
Rnξ

∫
Rny
ei(x−y)·ξ(2i|ξ|)−1(eit|ξ| − e−it|ξ|)(1− χ(ξ))u(y)dydξ =: K(t)u

(3) Show that the operator K(t) is smoothing.
(4) Show that F±(t) is an operator whose Schwartz kernel K±(t) is given

by an oscillatory integral. Compute WF(K±(t)).
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(5) Show that F±(t) : E ′(Rn)→ D′(Rn) is continuous. Given u ∈ E ′(Rn),
compute WF(F±(t)u) in terms of WF(u).

(6) Show existence and uniqueness of a solution f ∈ C∞([0,∞),S ′(Rn))

if u ∈ E ′(Rn).
(7) Take u := δ0. Compute WF(f(t, •)). Can you explain this from a

physical perspective?

Stationary phase

Exercise 19. Show that there exists C > 0 such that for all ϕ ∈ C∞comp(Rn),

‖ϕ̂‖L1(Rn) ≤ C‖ϕ‖Cn+1(Rn).

Exercise 20: The Morse lemma. Let X ⊂ Rn and φ ∈ C∞(X). Assume
that ∇φ(x0) = 0 and that the Hessian ∇2φ(x0) is non-degenerate (i.e. in-
vertible). Show that there exists a diffeomorphism κ : U → V , where U is
a small neighborhood of x0 and V is a small neighborhood of 0 ∈ Rn such
that for all y ∈ V :

κ∗φ(y) = φ(x0) +
1

2

(
y2

1 + ...+ y2
r − (y2

r+1 + ...+ y2
n)
)
.

The quantity sgn(∇φ(x0)) := r−(n−r) is called the signature of the Hessian.

Exercise 21. Let Q ∈ Mn(R) be non-degenerate symmetric. Show that
the following identities holds for all ξ ∈ Rn:

(1) Further assuming that Q is definite positive:

F
(
e−

1
2
〈Q•,•〉

)
(ξ) = (2π)n/2|detQ|−1/2e−

1
2
〈Q−1ξ,ξ〉.

(Fourier transform of a Gaussian.)
(2)

F
(
e
i
2
〈Q•,•〉

)
(ξ) = (2π)n/2ei

π
4

sgn(Q)|detQ|−1/2e−
i
2
〈Q−1ξ,ξ〉.

(Fourier transform of an imaginary quadratic phase function.)

Exercise 22. Given φ ∈ C∞(R) such that φ′ 6= 0 except at 0 where φ(0) =

φ′(0) = 0, φ′′(0) > 0, and a ∈ C∞comp(R), compute the Taylor expansion up
to O(h3/2) of ∫

R
e
i
hφ(x)a(x)dx.

Exercise 23. Study the convergence in D′(Rn) as h→ 0 of:

(1) uh(x) := h−Ne−
i
h
x, vh(x) := h−1/2e−

i
h
x2/2, wh(x) := h−1/2e+ i

h
x2/2,

(2) uh(x) := h−Ne−
i
h
f(x), vh(x) := h−1/2e−

i
h

(f(x))2/2, where f ∈ C∞(R)

and f ′ 6= 0.
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Exercise 22: Stirling’s formula. Define

F (λ) := Γ(λ+ 1) =

∫ +∞

0
e−ttλdt,

for λ ≥ 0. Recall that F (n) = Γ(n+ 1) = n! for all n ≥ 0. We want to find
an asymptotic of F as λ→∞.

(1) Rewrite this integral by means of the change of variable t = λ(1+s).
(2) Show that

F (λ) = (λe−1)λ
√

2πλ(1 + a1λ
−1 + a2λ

−2 + ...),

and give a precise meaning to “...”.
(3) Deduce Stirling’s formula.
(4) Compute a1, a2.
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