

HOMEWORK: ON THE SCHWARTZ KERNEL THEOREM

THIBAULT LEFEUVRE

Let $X, Y \subset \mathbb{R}^n$ be open subsets. Recall that, given $\varphi \in C_{\text{comp}}^\infty(X)$ and $(\varphi_n)_{n \geq 0}$, a sequence of functions in $C_{\text{comp}}^\infty(X)$, $\varphi_n \rightarrow \varphi$ if for all $n \geq 0$ large enough, all functions φ_n have support in a fixed compact subset $K \subset X$ and $\|\varphi_n - \varphi\|_{C^m(K)} \rightarrow 0$ for all $m \geq 0$. Denote by $\mathcal{L}(C_{\text{comp}}^\infty(Y), \mathcal{D}'(X))$ the space of continuous linear operators acting on compactly supported functions on Y , that is, $A \in \mathcal{L}(C_{\text{comp}}^\infty(Y), \mathcal{D}'(X))$ if and only if $A\varphi_n \rightarrow A\varphi$ in $\mathcal{D}'(X)$ for all $\varphi_n \rightarrow \varphi$ in $C_{\text{comp}}^\infty(Y)$. The aim of this homework is to prove the Schwartz kernel Theorem:

Theorem (Schwartz, 1952). *The map*

$$\Phi : \mathcal{D}'(X \times Y) \ni K \mapsto A_K \in \mathcal{L}(C_{\text{comp}}^\infty(Y), \mathcal{D}'(X)),$$

defined by $(A_K(\varphi), \psi) := (K, \psi \otimes \varphi)$ for $\psi \in C_{\text{comp}}^\infty(X)$ and $\varphi \in C_{\text{comp}}^\infty(Y)$, is an isomorphism.

We will not care much about the continuity of Φ , so by isomorphism, we simply mean a bijective linear map.

We recall that Sobolev spaces $H^s(\mathbb{R}^n)$ are defined as the completion of $C_{\text{comp}}^\infty(\mathbb{R}^n)$ with respect to the norm

$$\|f\|_{H^s}^2 := \int_{\mathbb{R}^n} \langle \xi \rangle^{2s} |\widehat{f}(\xi)|^2 \, d\xi.$$

For $\ell \in \mathbb{R}$, the space $\langle x \rangle^\ell H^s(\mathbb{R}^n)$ consists of all functions $f = \langle x \rangle^\ell \tilde{f}$, for some $\tilde{f} \in H^s(\mathbb{R}^n)$. The natural norm on this space is

$$\|f\|_{\langle x \rangle^\ell H^s(\mathbb{R}^n)} := \|\langle x \rangle^{-\ell} f\|_{H^s(\mathbb{R}^n)}.$$

(1) **Definition of Φ .** Show that Φ is well-defined.

(2) **Weighted Sobolev spaces.**

(a) Show that the pairing given by

$$C_{\text{comp}}^\infty(\mathbb{R}^n) \times C_{\text{comp}}^\infty(\mathbb{R}^n) \ni \varphi, \psi \mapsto (\varphi, \psi) := \int_{\mathbb{R}^n} \varphi(x) \psi(x) \, dx \in \mathbb{C} \quad (0.1)$$

extends continuously to a pairing $\langle x \rangle^\ell H^s(\mathbb{R}^n) \times \langle x \rangle^{-\ell} H^{-s}(\mathbb{R}^n) \rightarrow \mathbb{C}$, for all $s, \ell \in \mathbb{R}$.

(b) Show that for all $s, \ell \in \mathbb{R}$, there exists a natural identification of $(\langle x \rangle^\ell H^s(\mathbb{R}^n))'$ with $\langle x \rangle^{-\ell} H^{-s}(\mathbb{R}^n)$ using the extension of the pairing (0.1).

In other words, show that there is a natural isometry $\Psi : (\langle x \rangle^\ell H^s(\mathbb{R}^n))' \rightarrow \langle x \rangle^{-\ell} H^{-s}(\mathbb{R}^n)$ such that for all $T \in (\langle x \rangle^\ell H^s(\mathbb{R}^n))'$, $T(\varphi) = (\Psi(T), \varphi)$, where the last pairing is understood as the continuous extension obtained in (a).

As a first step towards proving the general Schwartz kernel Theorem, we want to prove it on Schwartz spaces. Recall that $\varphi_n \rightarrow \varphi$ in $\mathcal{S}(\mathbb{R}^n)$ if all Schwartz semi-norms are convergent. We say that $A : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}'(\mathbb{R}^n)$ is continuous if $A\varphi_n \rightarrow A\varphi$ for all $\varphi_n \rightarrow \varphi$ in $\mathcal{S}(\mathbb{R}^n)$, that is, for all $\psi \in \mathcal{S}(\mathbb{R}^n)$,

$$(A\varphi_n, \psi) \rightarrow (A\varphi, \psi).$$

For $M \geq 0$, we denote by $\|\cdot\|_{(M)}$ the norm $\|\cdot\|_{\langle x \rangle^{-M} H^{+M}(\mathbb{R}^n)}$.

(2) **Schwartz kernel Theorem on Schwartz spaces.**

(a) Show that $A \in \mathcal{L}(\mathcal{S}(\mathbb{R}^n), \mathcal{S}'(\mathbb{R}^n))$ if and only if there exists $M \geq 0$ large enough and $C > 0$ such that for all $\varphi, \psi \in \mathcal{S}(\mathbb{R}^n)$:

$$|(A\varphi, \psi)| \leq C\|\varphi\|_{(M)}\|\psi\|_{(M)}.$$

(b) Deduce that $A : \langle x \rangle^{-M} H^M(\mathbb{R}^n) \rightarrow \langle x \rangle^{+M} H^{-M}(\mathbb{R}^n)$ is bounded.
 (c) We now consider a continuous map $A : L^2(\mathbb{R}^n) \rightarrow H^m(\mathbb{R}^n)$. Show that for $m > 0$ large enough, and $x \in \mathbb{R}^n$, the map $L^2(\mathbb{R}^n) \ni \varphi \mapsto (A\varphi)(x) \in \mathbb{C}$ can be well-defined and is continuous.
 (d) Deduce that $A\varphi(x) = (T_x, \varphi) = \int_{\mathbb{R}^n} T_x(y)\varphi(y) dy$ for a certain map $T : \mathbb{R}^n \ni x \mapsto T_x \in L^2(\mathbb{R}_y^n)$ such that $T \in C_{\text{bded}}^0(\mathbb{R}_x^n, L^2(\mathbb{R}_y^n))$. (The last space denotes continuous functions with values in L^2 such that the C^0 norm is uniformly bounded on \mathbb{R}^n .)
 (e) Prove that $\mathcal{S}(\mathbb{R}_x^n) \otimes \mathcal{S}(\mathbb{R}_y^n)$ is dense in $\mathcal{S}(\mathbb{R}_x^n \times \mathbb{R}_y^n)$.
 (f) Eventually, deduce a version of the Schwartz kernel Theorem for Schwartz spaces: the map $\mathcal{S}'(\mathbb{R}^n \times \mathbb{R}^n) \ni K \mapsto A_K \in \mathcal{L}(\mathcal{S}(\mathbb{R}^n), \mathcal{S}'(\mathbb{R}^n))$ is an isomorphism.

(3) **Schwartz kernel Theorem.**

(a) Show that $C_{\text{comp}}^\infty(X) \otimes C_{\text{comp}}^\infty(Y)$ is dense in $C_{\text{comp}}^\infty(X \times Y)$.
 (b) Prove the Schwartz kernel Theorem.

(4) **Wavefront set computations.**

(a) What is the Schwartz kernel $K_{\text{id}} \in \mathcal{D}'(X \times X)$ of the identity map $\text{id} : C^\infty(X) \rightarrow C^\infty(X)$?
 (b) Compute $\text{WF}(K_{\text{id}})$.
 (c) Let $P := \sum_{|\alpha| \leq M} a_\alpha(x)D_x^\alpha$. Express K_P in terms of K_{id} . Deduce $\text{WF}(K_P)$.

UNIVERSITÉ DE PARIS AND SORBONNE UNIVERSITÉ, CNRS, IMJ-PRG, F-75006 PARIS, FRANCE.

E-mail address: tlfefeuvre@imj-prg.fr