GEOMETRIC ANALYSIS ON MANIFOLDS

The lecture notes from my webpage and personal notes taken during
the classes are allowed. Other material such as books or online ma-
terial is prohibited. The exam lasts three hours and consists of three
independent exercises and one problem.

EXERCISE 1

Let n > 1 be a positive integer. We denote by (R™)* the dual of R”,
namely the set of continuous linear forms (covectors) £ : R* — R, and
we write (€, v) for the pairing of an element ¢ € (R™)* with an element
v € R" (i.e. £ applied to the vector v). We consider A, B € GL,(R)
and a decomposition

R" = R* g R" %, (0.1)

such that A and B act diagonally on (0.1), that is, we have A(R¥) =
R* A(R"*) = R"* and the same for B. Recall that, if £ C R" is a
vector subspace, the conormal to E is defined as

N'E :={(z,§) e T"R" |z € E,Yv € E, ({,v) =0}.

We set NjE := N*E \ {0} (the conormal minus the zero section).

(1) Show that there exists a unique endomorphism A" € End((R")*)
such that for all £ € (R™)*, v € R™, the following equality holds:
(& Av) = (AT v).
We define the following distributions: Vo € Cgs,, (R™),

)= [ A 0)dr. Gng) = [ oBO)

(2) Show that supp(d4) = R* and that §, is of order 0.

(3) Show that WF(64) = NiR*. (A detailed answer is expected
here.)

(4) Show that the multiplication u := 64 x dp is well-defined.

(5) Compute u.
1



2 GEOMETRIC ANALYSIS ON MANIFOLDS

EXERCISE 2
On R", we define the Laplacian A := Y7 92 . We consider the
following Cauchy problem for the wave equation:
f—Af=0
S Sy Y 02

where u € C - (R™).

comp
(1) Show existence and uniqueness of a solution f € C*°([0, 00), S(R™))
for (0.2) if u € C2, (R™). Hint: use the Fourier transform in

comp
the space variable to show that f is the solution of a second-
order differential equation and solve this equation.

We let x € C*(R",[0,1]) be a smooth cutoff function such that
x =1for [{] <1 and x =0 for |{] > 2. For € > 0, we define:

St ) = ﬁ / ? / S = el

(2) Show that for all t > 0,z € R™: f.(t,x) —.0 f(t, ).

In the following, we will thus write the solution as:
63) = G / e )

We decompose the solution as

ft, ) = [t x) + f-(t,2) +r(t, ),

where

folt,) ey 21l = x(©))uly)dyd,

F(ta) =~ / SN e (L Oty
)= G / I ] (e — )€ u(y)dyae

We introduce the operators F, (t), F_(t) and R(t) such that f.(t,e) =
Fi(t)u and r(t,e) = R(t)u.
(3) Show that the operator R(t) is smoothing, that is, it is bounded
as a map &'(R") — C*(R").
(4) Write the Schwartz kernel K. (t) of the operators Fi(t) as an
oscillatory integral. What is the phase function and the ampli-
tude?
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(5) Show that
WE(K, (1) € {0 +1§:6,-8) | (1, e TR",
WE(K- (1)) € {(z.0 —tf:6,—) | (2,) e TER"},

where &% € R" is the vector such that for all v € R™ (&,v) =
Jeuc (€%, v) (here geye is the Euclidean metric).

(6) Deduce from the previous question that FL(t) : &' (R") —
D'(R") is continuous. Given u € &'(R™), bound WF (F(t)u) in
terms of WF (u).

(7) Show existence and uniqueness of a solution f € C*°([0, 00), D'(R"))
if u e &'(R").

(8) Take u := dp. Bound WF(f(¢,e)).

(9) (Cultural question) Can you explain the result of question (8)
from a physical perspective? Hint: think of a stone thrown in
water or a firework exploding.

For Exercise 3 and the Problem, we recall the following point. If
M is a closed manifold, £ — M is a vector bundle of finite rank and
A € Diff™" (M, E — E) is a differential operator of order m > 0, the
following holds: given S € C*(M), f € C*(M, E) such that dS # 0
on supp(f), and z € M,

(hme’%SA(e%S f)) (2) = o4(w,dS(x)) f(z) + O(h), (0.3)

where 04 € S™(T*M,End(F)) denotes a certain representative for the
principal symbol of A.

EXERCISE 3

Let M be a smooth orientable closed (i.e. compact, without bound-

ary) manifold. Let u be a smooth non-vanishing volume form on M
such that [, > 0. Let P € W"(M). Recall that the formal adjoint
P* of P is the unique operator in W™ (M) satisfying the equality: for
all i, € C=(M),

/M (Po)(@)P(x) 1 = /M o) (P () 1,

that is (Po, )2y = (@, P*Y) 2y The formal adjoint P* de-
pends on the choice of volume form . Hence, throughout this exercise,
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we will rather write P; for the formal adjoint of P with respect to the
volume form g in order to insist on that dependence.

(1) Let p/ := ap be another smooth positive volume form on M,
where a € C*°(M) is a positive function (beware of that: posi-
tive in English means strictly positive for the French). Compute
P}, in terms of a and Py.

(2) Deduce that the principal symbol op« is well-defined, indepen-
dently of the choice of density pu.

Recall that if o € C°(M,A*T*M) is a smooth k-form on M, the
Lie derivative Lxa € C(M,A*T*M) is defined by:

Lxa:=dixa+ txdo,

where d is the exterior derivative and ¢x : A*T*M — A*~'T*M is the
interior product defined such that (vxa)(vi,...,v%) = (X, vq, ..., k).
We will admit that it satisfies the following relation:

VneT*M,a € A*T*M, 1x(nAa)=nX)a—nAixa.

Let X € C*°(M,TM) be a smooth vector field, seen as a differential
operator of order 1 acting on functions by

X C®(M) = O=(M), Xe(z) = dp(X(x))

If o is a smooth volume-form on M, we define the divergence div,(X) €
C>® (M) of X with respect to p as the unique smooth function satisfying
the equality Lxp = div,(X)p.

(3) Show that Lx satisfies the usual Leibniz rule: for p € C*°(M), a €
C®(M,N*T*M), Lx(pa) = (Xp)a + pLxa.

(4) Compute the principal symbols: a) ox of X acting on functions
and b) 0., of Lx acting on k-forms. Hint: use (0.3).

(5) Compute the formal adjoint X of X with respect to p. Hint:
consider the quantity fM Lx (o).

(6) When is i~ X formally self-adjoint with respect to u, namely,
(7' X)% = 7' X? (Cultural question) What does it imply for
the vector field X7

(7) Compute o x=.
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PROBLEM: OPERATORS OF GRADIENT/DIVERGENCE TYPE

Notation. Let (M, g) be a smooth closed Riemannian manifold. The
metric ¢ is a metric on the tangent bundle 7M. It induces a smooth
metric on T*M, denoted by ¢!, such that |§|§,1 = [€%]2, where
f:T*M — TM is the musical isomorphism defined such that (£,v) =
g-(€,v) for all z € M,v € T,M. We denote by dvol, the smooth
Riemannian measure induced by g.

Let E, F — M be two smooth real vector bundles over M of finite
rank equipped with (fiberwise) metrics gg, gr. Without further notice,
we will also denote by E and F' their complexification F ®g C and
F®gC. The L*scalar product for sections of (the complexification of)
E' is then defined as:

V%iﬁ € OOO(M7 E)? <@7¢>L2(M,E‘) = /MgE(QO(x)vE(x)) dVOlg(I‘),

and similarly for sections of F. We denote by ¥"(M,E — F), the
space of pseudodifferential operators of order m € R mapping smooth
sections C*(M, F) to C*(M,F). Given P € V"(M,E — F), we
will denote by P* € U™ (M, F — E) its formal adjoint, defined as the
unique operator such that: Vo € C*(M, E),v € C*(M, F),

/M gr(Pp(x), B(x)) dvoly(x) = /M g5(p(), PO(x)) dvol,(x),
that is, (P, ¥)2m,r) = (@2 P ) 12(0,8)-

Recall that the principal symbol op of P is defined as the equivalence
class in S™(T*M,Hom(E, F))/S™ Y(T*M,Hom(E, F)) of its full sym-
bol (defined in coordinates). When talking about the principal symbol,
we will therefore assume that a representative p € S™(7T*M, Hom(E, F'))
was chosen. Eventually, recall that the principal symbol op« of the ad-
joint P* is given by the adjoint of the principal symbol of P, namely,
p*(x,&) € Hom(F,, E,) is a representative for the principal symbol
of P*. Here p*(z,§{) denotes the algebraic adjoint of p(z,§), i.e. the
homomorphism satisfying the relation

vf € Fx:e S Eﬂca gp(p(x,ﬁ)e,f) = gE(eap*(xaé)f>
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Preliminaries. Let P € Diftf""(M, E — F') be a differential operator
of order m > 0.

(1) Show that there exists a unique representative of the principal
symbol op, denoted by p € S™(T*M,Hom(F, F)), which is m-
homogeneous in the ¢-variable, namely, such that p(z, \§) =
A"p(z, ) for all (x,&) € T*M \ {0} ,\ > 0. Hint: Use (0.3).

Definition and examples. In the following, P € Diff""(M,E — F)
denotes a differential operator of order m > 0. With some slight
abuse of notation, we will denote indistinctly by the same letter op
the principal symbol of P and its unique m-homogeneous representative
obtained from question (1).

We will say that P is of gradient type if for all (z,§) € T*M \ {0},
its principal symbol

op(z,§) € Hom(E,, F,)

is injective. We will say that it is of divergence type if for all (z,§) €
T*M \ {0}, the principal symbol op(z,§) is surjective.
(2) Let V, : C®°(M) — C°(M,T{M) be the gradient of the metric
g defined as V¢ := (dp)*. Compute the principal symbols of
V, and of its adjoint (the divergence) V.
(3) Show that the gradient V, is of gradient type while the diver-
gence V is of divergence type.
(4) (Cultural question) Can you give another example of a differ-

ential operator of gradient type?

First properties. Let P € V™ (M, E — F) be a differential operator.
(5) Show that P is of gradient type if and only if its formal adjoint
P* e V"(M,F — E) is of divergence type.
(6) Show that P is of gradient type if and only if there exists a
constant C' > 0 such that for all x € M,{ € T M such that
|(];-1 > 1 and f € E,, the following inequality holds:

lop(z, &) fllr, = ClE[ 1 fle.

where || o ||z, := [gr(e, o)[V2 || & ||, = |gr (e, )]
From now on, we assume that P € U™ (M, E — F) is a given differen-
tial operator of gradient type.

(7) Show that the operator P*P € ¥?™(M,E — E) is elliptic.

/2.
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(8) Deduce from the previous question that there exists a parametrix
QeV"™MF —FE)and Re€ V">*(M,E — F) such that

QP:]-E_Ra

where 1g : C®(M,E) — C*(M, E) is the identity operator.
Show that the principal symbol o¢ of @) is given by

0q(r,€) = [op(z,§)op(z, )] op(, ). (0.4)

(9) Using the parametrix, prove that for all s € R:
(a) ker P|ys(m,k) is finite-dimensional, independent of s and
contained in C*(M, E),
(b) P(H**™(M, E)) is a closed subspace in H*(M, F').
(10) Consider the case P = V, of question (2). Compute ker V| gs(ar)
for all s € R.

Decomposition of the domain and target space of P. We de-
compose the Hilbert space L?(M, E) as:

L*(M,E) = ker P &+ G,

where G is the orthogonal of ker P with respect to the scalar prod-
uct (e, );2(n1p). We let Il be the orthogonal projection onto ker P
(parallel to G). We admit that, up to a modification by a smoothing
operator in ¥W~*(M, F — E), the operator () in question (8) can be
constructed so that

QP =1g— Ho, H()Q = 0, Vs € R, Q(kerP*

we(m,r)) = 0.

(11) Show that II2 = Ty, IT} = I, and that Iy € U~°(M, E — E).
(12) Show that for all (z,£) € T*M such that |[¢| > 1, for all f € F,,
there exists a unique pair (u,v) € E, x F, such that

f = O'p(.’L',f)u—f—/U,
and v € kerop(z,£), gr(op(z,§)u,v) = 0. Show that u =
ooz, &) f, where og is given in (0.4).

Let Tranop (2, €) be the orthogonal projection onto ran op(x, &) (with
respect to the metric gr) and Ter o3, (7, €) be the orthogonal projection
onto ker o} (z,§).

(13) Give an expression of Tranep, Therot, i terms of op, 0%, Show
that Tranop, Therot, € SO(T*M,End(F)).
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We admit that any section f € H*(M, F') can be decomposed as
f=Ph+k, (0.5)
where k € H*(M, F) Nker P*,h € H*™™ (M, E) and IIyh = 0.

(14) Show that the decomposition (0.5) is unique. Compute h and
k in terms of f.

(15) Show that, in the decomposition (0.5), we can write Ph =
HranPf and k = errP*f7 where HranPa errP* € \IIO(M7 F— F)
are pseudodifferential operators of order 0 such that 112, , =

HranP7 H12<er pr = err P* and HranP + err px = 1. Compute the

principal symbols oy, ., 0m,., . of these operators.

Operators of uniform divergence type. Let x, € M be an arbi-
trary point. The goal of this section is to study the evaluation map:

evy, : C®(M,F)Nker P* — F,,, ev, (f):= f(z,).

We will admit that all pseudodifferential operators involved in the
problem are classical (the technical definition of classical is not needed)
and that classical operators still satisfy the expansion (0.3).

We will say that the operator P* is of uniform divergence type
if for all z € M,

F,= Y kerop(z,¢), (0.6)
€],—1=1

where the sum in (0.6) is understood in the following sense:

Z kerop(z,&) = Span{v | 3§ € Ty M, |£],~1 = 1,v € kerop(z,&)} .

€l,—1=1

(16) Show that the divergence V7 is of uniform divergence type.

(17) Show that, under the assumption that P* is of uniform diver-
gence type, the evaluation map ev,, is surjective. Hint: Apply
(0.3) with the operator ye, p=.

(18) Show that if Mieros (2,€) # 0 for all (x,&) € T*M \ {0}, then
C>°(M, F) N ker P* is infinite-dimensional (without assuming
that P* is of uniform divergence type). Hint: You may con-
sider N distinct points x1,...,xxy on the manifold M and the
evaluation map

N
ev: C®(M,F)Nker P* — D F,.,

i=1

given by ev(f) = (f(x1), ..., f(zn)).
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