
GEOMETRIC ANALYSIS ON MANIFOLDS

The lecture notes from my webpage and personal notes taken during
the classes are allowed. Other material such as books or online ma-
terial is prohibited. The exam lasts three hours and consists of three
independent exercises and one problem.

Exercise 1

Let n ≥ 1 be a positive integer. We denote by (Rn)∗ the dual of Rn,
namely the set of continuous linear forms (covectors) ξ : Rn → R, and
we write (ξ, v) for the pairing of an element ξ ∈ (Rn)∗ with an element
v ∈ Rn (i.e. ξ applied to the vector v). We consider A,B ∈ GLn(R)
and a decomposition

Rn = Rk ⊕ Rn−k, (0.1)

such that A and B act diagonally on (0.1), that is, we have A(Rk) =
Rk, A(Rn−k) = Rn−k and the same for B. Recall that, if E ⊂ Rn is a
vector subspace, the conormal to E is defined as

N∗E := {(x, ξ) ∈ T ∗Rn | x ∈ E,∀v ∈ E, (ξ, v) = 0} .

We set N∗0E := N∗E \ {0} (the conormal minus the zero section).

(1) Show that there exists a unique endomorphismA> ∈ End((Rn)∗)
such that for all ξ ∈ (Rn)∗, v ∈ Rn, the following equality holds:
(ξ, Av) = (A>ξ, v).

We define the following distributions: ∀ϕ ∈ C∞comp(Rn),

(δA, ϕ) :=

∫
Rk
ϕ(A(x, 0))dx, (δB, ϕ) :=

∫
Rn−k

ϕ(B(0, y))dy.

(2) Show that supp(δA) = Rk and that δA is of order 0.
(3) Show that WF(δA) = N∗0Rk. (A detailed answer is expected

here.)
(4) Show that the multiplication u := δA × δB is well-defined.
(5) Compute u.
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Exercise 2

On Rn, we define the Laplacian ∆ :=
∑n

i=1 ∂
2
xi
. We consider the

following Cauchy problem for the wave equation:{
∂2
t f −∆f = 0
f(t = 0) = 0, ∂tf(t = 0) = u,

(0.2)

where u ∈ C∞comp(Rn).
(1) Show existence and uniqueness of a solution f ∈ C∞([0,∞),S(Rn))

for (0.2) if u ∈ C∞comp(Rn). Hint: use the Fourier transform in
the space variable to show that f̂ is the solution of a second-
order differential equation and solve this equation.

We let χ ∈ C∞(Rn, [0, 1]) be a smooth cutoff function such that
χ = 1 for |ξ| ≤ 1 and χ = 0 for |ξ| ≥ 2. For ε > 0, we define:

fε(t, x) :=
1

(2π)n

∫
Rnξ

∫
Rny
ei(x−y)·ξ(2i|ξ|)−1(eit|ξ| − e−it|ξ|)χ(εξ)u(y)dydξ.

(2) Show that for all t ≥ 0, x ∈ Rn: fε(t, x)→ε→0 f(t, x).
In the following, we will thus write the solution as:

f(t, x) =
1

(2π)n

∫
Rnξ

∫
Rny
ei(x−y)·ξ(2i|ξ|)−1(eit|ξ| − e−it|ξ|)u(y)dydξ.

We decompose the solution as

f(t, x) = f+(t, x) + f−(t, x) + r(t, x),

where

f+(t, x) = +
1

(2π)n

∫
Rnξ

∫
Rny
ei(x−y)·ξ(2i|ξ|)−1e+it|ξ|(1− χ(ξ))u(y)dydξ,

f−(t, x) = − 1

(2π)n

∫
Rnξ

∫
Rny
ei(x−y)·ξ(2i|ξ|)−1e−it|ξ|(1− χ(ξ))u(y)dydξ,

r(t, x) =
1

(2π)n

∫
Rnξ

∫
Rny
ei(x−y)·ξ(2i|ξ|)−1(eit|ξ| − e−it|ξ|)χ(ξ)u(y)dydξ.

We introduce the operators F+(t), F−(t) and R(t) such that f±(t, •) =
F±(t)u and r(t, •) = R(t)u.

(3) Show that the operator R(t) is smoothing, that is, it is bounded
as a map E ′(Rn)→ C∞(Rn).

(4) Write the Schwartz kernel K±(t) of the operators F±(t) as an
oscillatory integral. What is the phase function and the ampli-
tude?
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(5) Show that

WF(K+(t)) ⊂
{

(x, x+ t ξ
]

|ξ| ; ξ,−ξ) | (x, ξ) ∈ T ∗0 Rn
}
,

WF(K−(t)) ⊂
{

(x, x− t ξ]|ξ| ; ξ,−ξ) | (x, ξ) ∈ T ∗0 Rn
}
,

where ξ] ∈ Rn is the vector such that for all v ∈ Rn (ξ, v) =
geuc(ξ

], v) (here geuc is the Euclidean metric).
(6) Deduce from the previous question that F±(t) : E ′(Rn) →
D′(Rn) is continuous. Given u ∈ E ′(Rn), bound WF(F±(t)u) in
terms of WF(u).

(7) Show existence and uniqueness of a solution f ∈ C∞([0,∞),D′(Rn))
if u ∈ E ′(Rn).

(8) Take u := δ0. Bound WF(f(t, •)).
(9) (Cultural question) Can you explain the result of question (8)

from a physical perspective? Hint: think of a stone thrown in
water or a firework exploding.

For Exercise 3 and the Problem, we recall the following point. If
M is a closed manifold, E → M is a vector bundle of finite rank and
A ∈ Diffm(M,E → E) is a differential operator of order m ≥ 0, the
following holds: given S ∈ C∞(M), f ∈ C∞(M,E) such that dS 6= 0
on supp(f), and x ∈M ,(

hme−
i
h
SA(e

i
h
Sf)
)

(x) = σA(x, dS(x))f(x) +O(h), (0.3)

where σA ∈ Sm(T ∗M,End(E)) denotes a certain representative for the
principal symbol of A.

Exercise 3

Let M be a smooth orientable closed (i.e. compact, without bound-
ary) manifold. Let µ be a smooth non-vanishing volume form on M
such that

∫
M
µ > 0. Let P ∈ Ψm(M). Recall that the formal adjoint

P ∗ of P is the unique operator in Ψm(M) satisfying the equality: for
all ϕ, ψ ∈ C∞(M),∫

M

(Pϕ)(x)ψ(x) µ =

∫
M

ϕ(x)(P ∗ψ)(x) µ,

that is 〈Pϕ, ψ〉L2(M,µ) = 〈ϕ, P ∗ψ〉L2(M,µ). The formal adjoint P ∗ de-
pends on the choice of volume form µ. Hence, throughout this exercise,
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we will rather write P ∗µ for the formal adjoint of P with respect to the
volume form µ in order to insist on that dependence.

(1) Let µ′ := aµ be another smooth positive volume form on M ,
where a ∈ C∞(M) is a positive function (beware of that: posi-
tive in English means strictly positive for the French). Compute
P ∗µ′ in terms of a and P ∗µ .

(2) Deduce that the principal symbol σP ∗ is well-defined, indepen-
dently of the choice of density µ.

Recall that if α ∈ C∞(M,ΛkT ∗M) is a smooth k-form on M , the
Lie derivative LXα ∈ C∞(M,ΛkT ∗M) is defined by:

LXα := dιXα + ιXdα,

where d is the exterior derivative and ιX : Λ•T ∗M → Λ•−1T ∗M is the
interior product defined such that (ιXα)(v1, ..., vk) = α(X, v1, ..., vk).
We will admit that it satisfies the following relation:

∀η ∈ T ∗M,α ∈ ΛkT ∗M, ιX(η ∧ α) = η(X)α− η ∧ ιXα.
Let X ∈ C∞(M,TM) be a smooth vector field, seen as a differential

operator of order 1 acting on functions by

X : C∞(M)→ C∞(M), Xϕ(x) := dϕ(X(x))

If µ is a smooth volume-form onM , we define the divergence divµ(X) ∈
C∞(M) ofX with respect to µ as the unique smooth function satisfying
the equality LXµ = divµ(X)µ.

(3) Show that LX satisfies the usual Leibniz rule: for ϕ ∈ C∞(M), α ∈
C∞(M,ΛkT ∗M), LX(ϕα) = (Xϕ)α + ϕLXα.

(4) Compute the principal symbols: a) σX of X acting on functions
and b) σLX of LX acting on k-forms. Hint: use (0.3).

(5) Compute the formal adjoint X∗µ of X with respect to µ. Hint:
consider the quantity

∫
M
LX(ϕψµ).

(6) When is i−1X formally self-adjoint with respect to µ, namely,
(i−1X)∗µ = i−1X? (Cultural question) What does it imply for
the vector field X?

(7) Compute σX∗ .
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Problem: operators of gradient/divergence type

Notation. Let (M, g) be a smooth closed Riemannian manifold. The
metric g is a metric on the tangent bundle TM . It induces a smooth
metric on T ∗M , denoted by g−1, such that |ξ|2g−1 := |ξ]|2g, where
] : T ∗M → TM is the musical isomorphism defined such that (ξ, v) =
gx(ξ

], v) for all x ∈ M, v ∈ TxM . We denote by dvolg the smooth
Riemannian measure induced by g.

Let E,F → M be two smooth real vector bundles over M of finite
rank equipped with (fiberwise) metrics gE, gF . Without further notice,
we will also denote by E and F their complexification E ⊗R C and
F ⊗RC. The L2-scalar product for sections of (the complexification of)
E is then defined as:

∀ϕ, ψ ∈ C∞(M,E), 〈ϕ, ψ〉L2(M,E) :=

∫
M

gE(ϕ(x), ψ(x)) dvolg(x),

and similarly for sections of F . We denote by Ψm(M,E → F ), the
space of pseudodifferential operators of order m ∈ R mapping smooth
sections C∞(M,E) to C∞(M,F ). Given P ∈ Ψm(M,E → F ), we
will denote by P ∗ ∈ Ψm(M,F → E) its formal adjoint, defined as the
unique operator such that: ∀ϕ ∈ C∞(M,E), ψ ∈ C∞(M,F ),∫

M

gF (Pϕ(x), ψ(x)) dvolg(x) =

∫
M

gE(ϕ(x), P ∗ψ(x)) dvolg(x),

that is, 〈Pϕ, ψ〉L2(M,F ) = 〈ϕ, P ∗ψ〉L2(M,E).

Recall that the principal symbol σP of P is defined as the equivalence
class in Sm(T ∗M,Hom(E,F ))/Sm−1(T ∗M,Hom(E,F )) of its full sym-
bol (defined in coordinates). When talking about the principal symbol,
we will therefore assume that a representative p ∈ Sm(T ∗M,Hom(E,F ))
was chosen. Eventually, recall that the principal symbol σP ∗ of the ad-
joint P ∗ is given by the adjoint of the principal symbol of P , namely,
p∗(x, ξ) ∈ Hom(Fx, Ex) is a representative for the principal symbol
of P ∗. Here p∗(x, ξ) denotes the algebraic adjoint of p(x, ξ), i.e. the
homomorphism satisfying the relation

∀f ∈ Fx, e ∈ Ex, gF (p(x, ξ)e, f) = gE(e, p∗(x, ξ)f).
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Preliminaries. Let P ∈ Diffm(M,E → F ) be a differential operator
of order m ≥ 0.

(1) Show that there exists a unique representative of the principal
symbol σP , denoted by p ∈ Sm(T ∗M,Hom(E,F )), which is m-
homogeneous in the ξ-variable, namely, such that p(x, λξ) =
λmp(x, ξ) for all (x, ξ) ∈ T ∗M \ {0} , λ > 0. Hint: Use (0.3).

Definition and examples. In the following, P ∈ Diffm(M,E → F )
denotes a differential operator of order m ≥ 0. With some slight
abuse of notation, we will denote indistinctly by the same letter σP
the principal symbol of P and its uniquem-homogeneous representative
obtained from question (1).

We will say that P is of gradient type if for all (x, ξ) ∈ T ∗M \{0},
its principal symbol

σP (x, ξ) ∈ Hom(Ex, Fx)

is injective. We will say that it is of divergence type if for all (x, ξ) ∈
T ∗M \ {0}, the principal symbol σP (x, ξ) is surjective.

(2) Let ∇g : C∞(M)→ C∞(M,T ∗CM) be the gradient of the metric
g defined as ∇gϕ := (dϕ)]. Compute the principal symbols of
∇g and of its adjoint (the divergence) ∇∗g.

(3) Show that the gradient ∇g is of gradient type while the diver-
gence ∇∗g is of divergence type.

(4) (Cultural question) Can you give another example of a differ-
ential operator of gradient type?

First properties. Let P ∈ Ψm(M,E → F ) be a differential operator.

(5) Show that P is of gradient type if and only if its formal adjoint
P ∗ ∈ Ψm(M,F → E) is of divergence type.

(6) Show that P is of gradient type if and only if there exists a
constant C > 0 such that for all x ∈ M, ξ ∈ T ∗xM such that
|ξ|g−1 ≥ 1 and f ∈ Ex, the following inequality holds:

‖σP (x, ξ)f‖Fx ≥ C|ξ|mg−1 ‖f‖Ex ,

where ‖ • ‖Ex := |gE(•, •)|1/2, ‖ • ‖Fx := |gF (•, •)|1/2.
From now on, we assume that P ∈ Ψm(M,E → F ) is a given differen-
tial operator of gradient type.

(7) Show that the operator P ∗P ∈ Ψ2m(M,E → E) is elliptic.
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(8) Deduce from the previous question that there exists a parametrix
Q ∈ Ψ−m(M,F → E) and R ∈ Ψ−∞(M,E → E) such that

QP = 1E −R,

where 1E : C∞(M,E) → C∞(M,E) is the identity operator.
Show that the principal symbol σQ of Q is given by

σQ(x, ξ) = [σ∗P (x, ξ)σP (x, ξ)]−1σ∗P (x, ξ). (0.4)

(9) Using the parametrix, prove that for all s ∈ R:
(a) kerP |Hs(M,E) is finite-dimensional, independent of s and

contained in C∞(M,E),
(b) P (Hs+m(M,E)) is a closed subspace in Hs(M,F ).

(10) Consider the case P = ∇g of question (2). Compute ker∇g|Hs(M)

for all s ∈ R.

Decomposition of the domain and target space of P . We de-
compose the Hilbert space L2(M,E) as:

L2(M,E) = kerP ⊕⊥ G,

where G is the orthogonal of kerP with respect to the scalar prod-
uct 〈•, •〉L2(M,E). We let Π0 be the orthogonal projection onto kerP
(parallel to G). We admit that, up to a modification by a smoothing
operator in Ψ−∞(M,F → E), the operator Q in question (8) can be
constructed so that

QP = 1E − Π0, Π0Q = 0, ∀s ∈ R, Q(kerP ∗|Hs(M,F )) = 0.

(11) Show that Π2
0 = Π0, Π∗0 = Π0 and that Π0 ∈ Ψ−∞(M,E → E).

(12) Show that for all (x, ξ) ∈ T ∗M such that |ξ| ≥ 1, for all f ∈ Fx,
there exists a unique pair (u, v) ∈ Ex × Fx such that

f = σP (x, ξ)u+ v,

and v ∈ kerσ∗P (x, ξ), gF (σP (x, ξ)u, v) = 0. Show that u =
σQ(x, ξ)f , where σQ is given in (0.4).

Let πranσP (x, ξ) be the orthogonal projection onto ranσP (x, ξ) (with
respect to the metric gF ) and πkerσ∗P

(x, ξ) be the orthogonal projection
onto kerσ∗P (x, ξ).

(13) Give an expression of πranσP , πkerσ∗P
in terms of σP , σ∗P . Show

that πranσP , πkerσ∗P
∈ S0(T ∗M,End(F )).
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We admit that any section f ∈ Hs(M,F ) can be decomposed as

f = Ph+ k, (0.5)

where k ∈ Hs(M,F ) ∩ kerP ∗, h ∈ Hs+m(M,E) and Π0h = 0.
(14) Show that the decomposition (0.5) is unique. Compute h and

k in terms of f .
(15) Show that, in the decomposition (0.5), we can write Ph =

ΠranPf and k = ΠkerP ∗f , where ΠranP ,ΠkerP ∗ ∈ Ψ0(M,F → F )
are pseudodifferential operators of order 0 such that Π2

ranP =
ΠranP ,Π

2
kerP ∗ = ΠkerP ∗ and ΠranP + ΠkerP ∗ = 1. Compute the

principal symbols σΠranP
, σΠkerP∗ of these operators.

Operators of uniform divergence type. Let x? ∈ M be an arbi-
trary point. The goal of this section is to study the evaluation map:

evx? : C∞(M,F ) ∩ kerP ∗ → Fx? , evx?(f) := f(x?).

We will admit that all pseudodifferential operators involved in the
problem are classical (the technical definition of classical is not needed)
and that classical operators still satisfy the expansion (0.3).

We will say that the operator P ∗ is of uniform divergence type
if for all x ∈M ,

Fx =
∑
|ξ|g−1=1

kerσ∗P (x, ξ), (0.6)

where the sum in (0.6) is understood in the following sense:∑
|ξ|g−1=1

kerσ∗P (x, ξ) = Span {v | ∃ξ ∈ T ∗xM, |ξ|g−1 = 1, v ∈ kerσ∗P (x, ξ)} .

(16) Show that the divergence ∇∗g is of uniform divergence type.
(17) Show that, under the assumption that P ∗ is of uniform diver-

gence type, the evaluation map evx? is surjective. Hint: Apply
(0.3) with the operator ΠkerP ∗.

(18) Show that if πkerσ∗P
(x, ξ) 6= 0 for all (x, ξ) ∈ T ∗M \ {0}, then

C∞(M,F ) ∩ kerP ∗ is infinite-dimensional (without assuming
that P ∗ is of uniform divergence type). Hint: You may con-
sider N distinct points x1, ..., xN on the manifold M and the
evaluation map

ev : C∞(M,F ) ∩ kerP ∗ →
N⊕
i=1

Fxi ,

given by ev(f) := (f(x1), ..., f(xN)).
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