

# Generic dynamical properties of connections on vector bundles

Thibault Lefeuvre

Joint work with Mihajlo Cekić

Institut de Mathématiques de Jussieu — Paris Rive Gauche

November 10th 2020

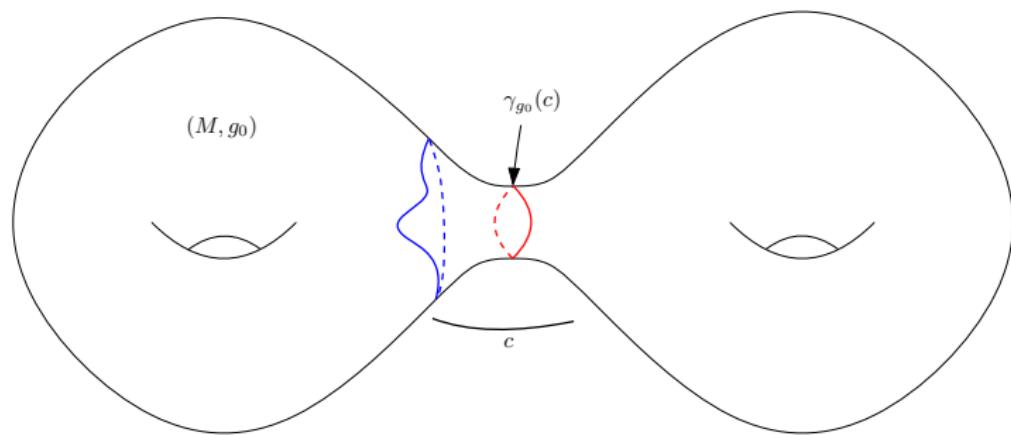




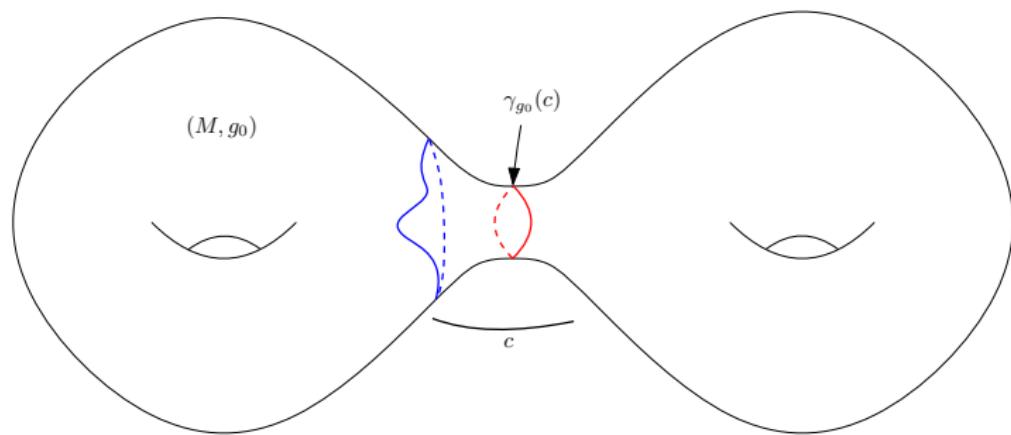
- $(M, g)$  smooth closed (compact,  $\partial M = \emptyset$ ) Riemannian manifold with **negative sectional curvature** (or Anosov manifold i.e. with Anosov geodesic flow on the unit tangent bundle).
- $SM = \{(x, v) \in TM \mid |v| = 1\}$  unit tangent bundle,  $\varphi_t : SM \rightarrow SM$  geodesic flow and  $X := d/dt(\varphi_t)|_{t=0}$  geodesic vector field.
- $\mathcal{C}$  = set of free homotopy classes  $\stackrel{1\text{-to-}1}{\leftrightarrow}$  closed geodesics (i.e.  $\forall c \in \mathcal{C}, \exists! \gamma_{g_0}(c) \in c$ )



- $(M, g)$  smooth closed (compact,  $\partial M = \emptyset$ ) Riemannian manifold with **negative sectional curvature** (or Anosov manifold i.e. with Anosov geodesic flow on the unit tangent bundle).
- $SM = \{(x, v) \in TM \mid |v| = 1\}$  unit tangent bundle,  $\varphi_t : SM \rightarrow SM$  geodesic flow and  $X := d/dt(\varphi_t)|_{t=0}$  geodesic vector field.
- $\mathcal{C}$  = set of free homotopy classes  $\stackrel{1\text{-to-}1}{\leftrightarrow}$  closed geodesics (i.e.  $\forall c \in \mathcal{C}, \exists! \gamma_{g_0}(c) \in c$ )



- $(M, g)$  smooth closed (compact,  $\partial M = \emptyset$ ) Riemannian manifold with **negative sectional curvature** (or Anosov manifold i.e. with Anosov geodesic flow on the unit tangent bundle).
- $SM = \{(x, v) \in TM \mid |v| = 1\}$  unit tangent bundle,  $\varphi_t : SM \rightarrow SM$  geodesic flow and  $X := d/dt(\varphi_t)|_{t=0}$  geodesic vector field.
- $\mathcal{C} = \text{set of free homotopy classes} \stackrel{1\text{-to-}1}{\leftrightarrow} \text{closed geodesics (i.e. } \forall c \in \mathcal{C}, \exists! \gamma_{g_0}(c) \in c)$



- Let  $\mathcal{E} \rightarrow M$  be a smooth **vector bundle** over  $M$  equipped with a unitary connection  $\nabla^{\mathcal{E}}$ . Given an (oriented) geodesic  $\gamma \subset M$ , denote by  $P_{\gamma} : \mathcal{E}_{x_-} \rightarrow \mathcal{E}_{x_+}$  the parallel transport along  $\gamma$  with respect to  $\nabla^{\mathcal{E}}$ , where  $x_-, x_+$  are the two extremal points of  $\gamma$ .
- We want to study **holonomy of connections along closed geodesics**. For that, we introduce:

$$\text{Hol}_{\nabla^{\mathcal{E}}} : \mathcal{C} \rightarrow \prod_{c \in \mathcal{C}} \text{U}(\mathcal{E}_{x_c}), \quad c \mapsto P_{\gamma_g(c)},$$

where  $x_c \in \gamma_g(c)$  is arbitrary.

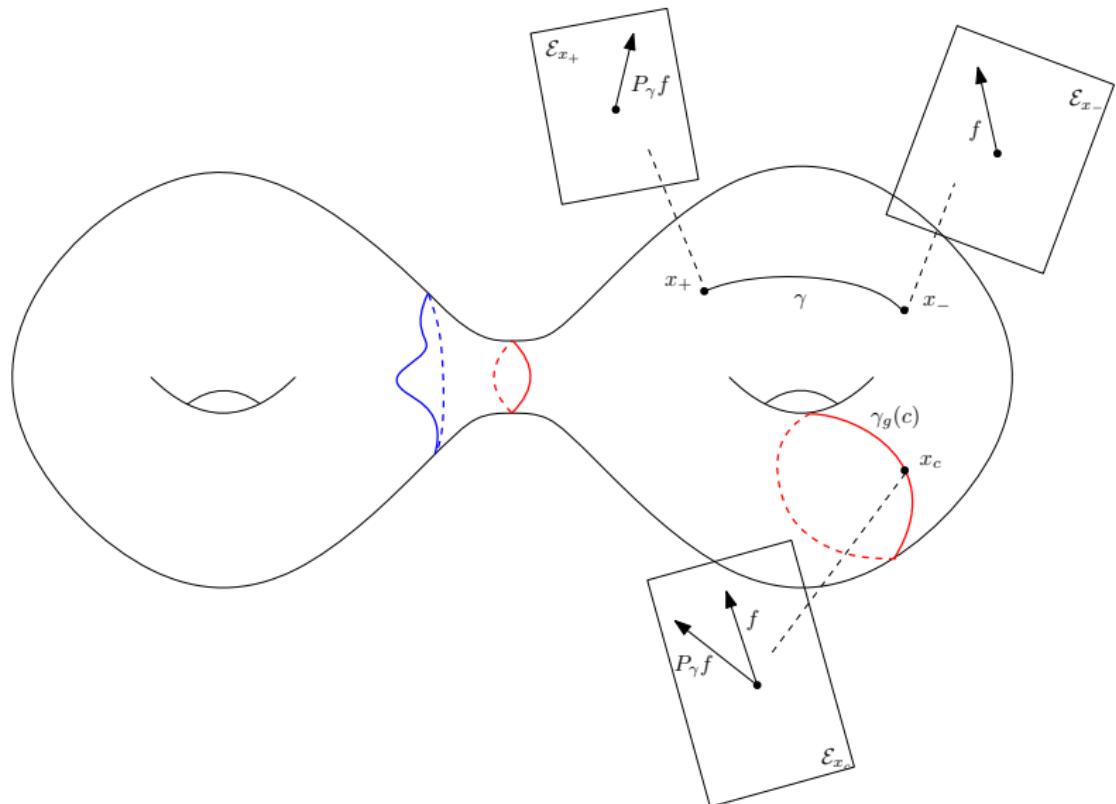


Figure: Parallel transport along geodesics.

**Question:** Does the holonomy of a connection along closed geodesics determine  $\nabla^{\mathcal{E}}$  up to a gauge equivalent factor?

- Two connections  $\nabla_1^{\mathcal{E}}$  and  $\nabla_2^{\mathcal{E}}$  are gauge-equivalent if there exists  $p \in C^\infty(M, \mathrm{U}(\mathcal{E}))$  such that  $\nabla_1^{\mathcal{E}} f = p^{-1} \nabla_2^{\mathcal{E}}(pf)$ .
- Similar question to the [Marked Length Spectrum \(MLS\) Conjecture](#).  
The MLS is defined as the map

$$L_g : \mathcal{C} \rightarrow \mathbb{R}_+, \quad c \mapsto \ell_g(\gamma_g(c)).$$

It is conjectured (**Burns-Katok '85**) that in negative curvature the MLS should determine the metric  $g$  in the following sense:

### Conjecture (**Burns-Katok '85**)

If  $L_g = L_{g'}$ , then  $g$  and  $g'$  are isometric i.e. there exists a diffeomorphism  $\phi : M \rightarrow M$  isotopic to the identity such that  $\phi^* g = g'$ .

**Answer 1:** Yes for line bundles on Anosov manifolds (**Paternain '09-'13**).

- We can even produce **stability estimates** in the case of line bundles.
- Consider  $\mathcal{L} \rightarrow M$  a line bundle. Then, for  $c \in \mathcal{C}$ ,  $\text{Hol}_{\nabla^{\mathcal{L}}}(c) \in \mathbb{C}$  (and  $\text{U}(1)$  if  $\nabla^{\mathcal{L}}$  unitary).

### Theorem (Cekic-L. '20)

Assume  $(M, g)$  is Anosov. There exists  $\alpha > 0, C > 0$  such that the following holds:

$$d(\nabla_1^{\mathcal{L}}, \nabla_2^{\mathcal{L}}) \leq C \sup_{c \in \mathcal{C}} \left( L_g(c)^{-1} |\text{Hol}_{\nabla_1^{\mathcal{L}}}(c) \text{Hol}_{\nabla_2^{\mathcal{L}}}^{-1}(c) - 1| \right)^{\alpha}$$

- $d(\nabla_1^{\mathcal{L}}, \nabla_2^{\mathcal{L}})$  is a **natural distance** on the space of connections which is 0 iff the connections are gauge-equivalent.
- Proof is based on an approximate Livsic Theorem for cocycles and the **microlocal framework** introduced in **Guillarmou '17**, **Guillarmou-L. '18**, **Gouëzel-L. '19**.

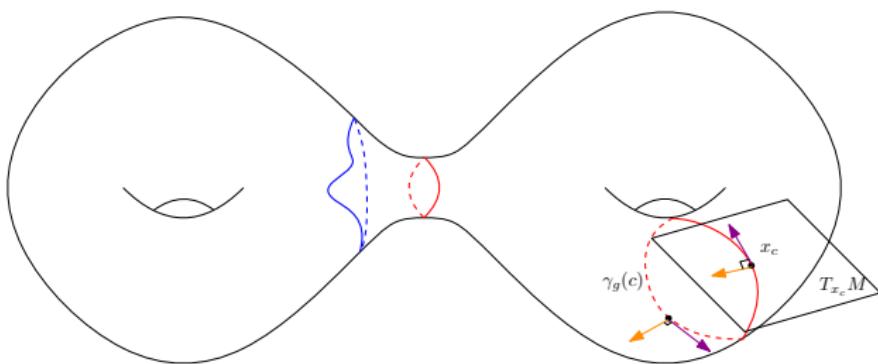
**Answer 2:** However, in higher rank, the situation is more complicated.

A first case to investigate is that of **transparent connections**:

## Definition

We say that  $\nabla^E$  is transparent if the holonomy is trivial on every closed geodesics i.e.  $\text{Hol}_{\nabla^E}(c) = \mathbf{1}$  for all  $c \in \mathcal{C}$ .

**Examples:** (1) The trivial connection  $d$  on the trivial vector bundle  $\mathbb{C}^r \times M \rightarrow M$  (don't worry, there are other examples!). (2) On a oriented Riemannian surface  $(M, g)$ , the Levi-Civita connection is always transparent.



**Figure:** An oriented Riemannian surface is always transparent.

- Let  $\pi : SM \rightarrow M$  be the projection. Consider  $\pi^* \mathcal{E} \rightarrow SM$  equipped with the pullback connection  $\pi^* \nabla^{\mathcal{E}}$ . Parallel transport of sections of  $\mathcal{E}$  along geodesics is equivalent to parallel transport of sections of  $\pi^* \mathcal{E}$  along flowline of the geodesic flow.
- For  $(x, v) \in SM$ , denote by

$$P((x, v), t) : \mathcal{E}_x \rightarrow \mathcal{E}_{\pi(\varphi_t(x, v))},$$

the parallel transport map (this is a cocycle). Write  $\mathbf{X} := (\pi^* \nabla^{\mathcal{E}})_x$  (generator of the cocycle).

- The connection  $\nabla^{\mathcal{E}}$  is transparent if and only if  $P((x, v), T) = \mathbf{1}$  for all  $T$ -periodic points  $(x, v) \in SM$  of the geodesic flow.

### Lemma (Folklore)

If  $\nabla^{\mathcal{E}}$  is transparent, then  $\pi^* \mathcal{E} \rightarrow SM$  is trivial and there exists a global basis  $(e_1, \dots, e_r)$  such that  $e_i \in C^\infty(SM, \pi^* \mathcal{E})$  and  $\mathbf{X} e_i = 0$ .

**Idea of proof:** Consider  $\mathcal{O}(x_0, v_0)$  a **dense orbit** for the geodesic flow. Consider  $(e_1, \dots, e_r)$  an orthonormal basis at  $\mathcal{E}_{x_0, v_0}$  and parallel-transport this basis along the orbit.

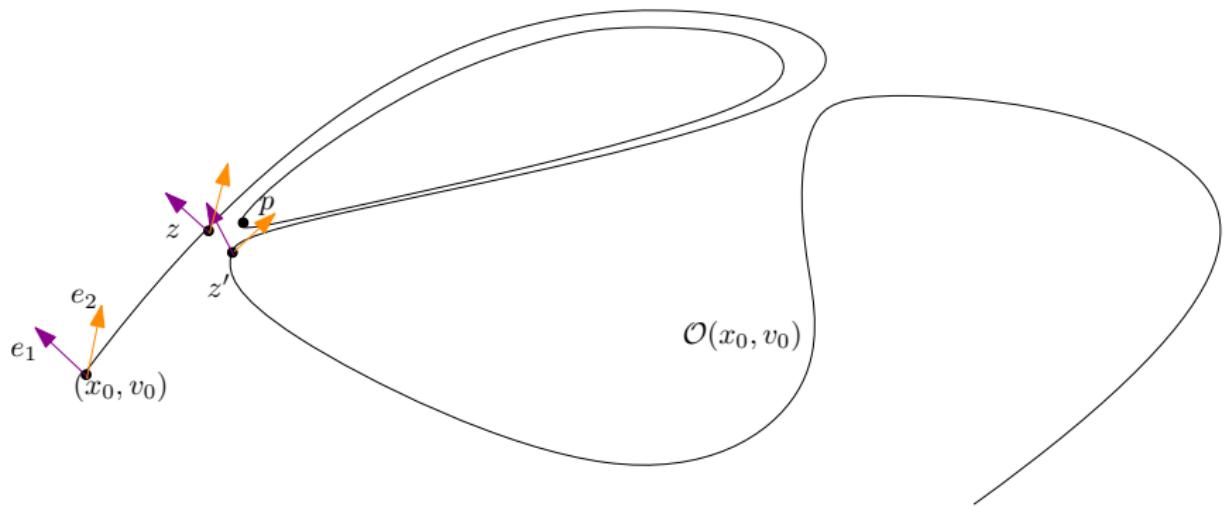


Figure: Parallel transport along the dense geodesic.

- We now want to study equations of the form  $\mathbf{X}f = 0$ , where  $f \in C^\infty(SM, \pi^*\mathcal{E})$  or more generally  $\mathbf{X}f = u$ . These are called **twisted cohomological equations**.
- A first remark is: given  $h \in C^\infty(SM)$ , it can be decomposed in **Fourier modes** in the sphere fibers  $h = \sum_{m \geq 0} h_m$ , where

$$h_m \in \ker(\Delta^{\mathbb{V}}(x) + m(m+n-2)) =: \Omega_m(x)$$

is a **spherical harmonics of degree  $m \in \mathbb{N}$**  and  $\Delta^{\mathbb{V}}$  is the vertical Laplacian. ( $\Omega_m \rightarrow M$  is a vector bundle over  $M$ .)

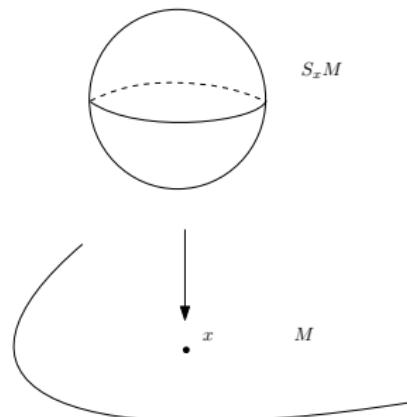


Figure: Sphere fibration.

- Let  $M \ni x \mapsto (e_1(x), \dots, e_r(x))$  be a local orthonormal basis of  $\mathcal{E}$  around some point  $x_0 \in M$ . If  $f \in C^\infty(SM, \pi^*\mathcal{E})$ , then

$$f(x, v) = \sum_{k=1}^r f_k(x, v) e_k(x), \quad f_k \in C^\infty(SM).$$

Each  $f_k \in C^\infty(SM)$  can be pointwise decomposed in the sphere fibers into Fourier modes. Hence:

$$C^\infty(SM, \pi^*\mathcal{E}) = \bigoplus_{m \geq 0} C^\infty(M, \Omega_m \otimes \mathcal{E}).$$

We call **degree**  $\deg(f) = N$ , if  $f = f_0 + \dots + f_N$  and  $f_N \neq 0$ .

- We see  $\mathbf{X} : C^\infty(SM, \pi^*\mathcal{E}) \rightarrow C^\infty(SM, \pi^*\mathcal{E})$  (recall  $\mathbf{X} := (\pi^*\nabla^\mathcal{E})_X$ ) as a **differential operator of order 1**. One can show **(Guillemin-Kazhdan '80)**:

$$\mathbf{X} : C^\infty(M, \Omega_m \otimes \mathcal{E}) \rightarrow C^\infty(M, \Omega_{m-1} \otimes \mathcal{E}) \oplus C^\infty(M, \Omega_{m+1} \otimes \mathcal{E}),$$

thus  $\mathbf{X} = \mathbf{X}_- + \mathbf{X}_+$ . ( $\mathbf{X}_+$  is of **gradient-type**,  $\mathbf{X}_-$  of **divergence-type**.)

**Question:** If  $\mathbf{X}f = u$  and  $u = u_0 + \dots + u_m \in C^\infty(SM, \pi^*\mathcal{E})$  has degree  $m$ , does  $f$  have degree  $m - 1$ ? (or 0 if  $m = 0$ )

### Theorem (Guillarmou-Paternain-Salo-Uhlmann '16)

If  $(M, g)$  has negative curvature, then  $\deg(f) < \infty$ .

- Proof relies on an  $L^2$ -energy estimate called the **(twisted) Pestov identity**.
- Obstruction to having  $\deg(f) = m - 1$  is the existence of **twisted Conformal Killing Tensors**, i.e. elements in  $\ker \mathbf{X}_+|_{\Omega_m \otimes \mathcal{E}} \neq \{0\}$  for  $m \geq 1$ . Indeed, assume there are no CKTS of degree  $m \geq 1$  and  $\mathbf{X}f = 0$ . Then  $f = f_0 + \dots + f_N$  (by [GPSU16]) and  $\mathbf{X}f = 0$  implies  $\mathbf{X}_+ f_N = 0$ , hence  $f_N = 0$  unless  $N = 0$ .
- In particular, if  $\nabla^\mathcal{E}$  is transparent and has no CKTs, then  $\mathbf{X}e_i = 0$  imply that  $\deg(e_i) = 0$ , i.e.  $e_i \in C^\infty(M, \mathcal{E})$ . Then  $\mathbf{X}e_i = 0 = \nabla^\mathcal{E} e_i$ . In other words,  $(\mathcal{E}, \nabla^\mathcal{E})$  is isomorphic to the trivial bundle  $(\mathbb{C}^r \times M, d)$  with trivial connection.

- Consider  $(M, g)$  smooth closed manifold (no curvature/Anosov assumption!),  $\mathcal{E} \rightarrow M$  smooth vector bundle. Denote by  $\mathcal{R}^{\mathcal{E}}$  the set of connections on  $\mathcal{E}$  without CKTs.

### Theorem (Cekic-L. '20)

Assume  $\dim(M) \geq 3$ . Then  $\mathcal{R}^{\mathcal{E}}$  is residual (among all unitary connections of regularity  $C^k$ ,  $k \geq 2$ ).

- Generic absence of CKTs has other consequences. (It is more exactly the absence of CKTs for the induced connection on the endomorphism bundle.)

### Theorem (Cekic-L. '20)

Assume  $(M, g)$  has negative curvature. Consider  $\mathcal{E} \rightarrow M$  and a generic unitary connection  $\nabla_0^{\mathcal{E}}$ . Then, there exists  $\varepsilon, \alpha, N, C > 0$  such that for all  $\nabla^{\mathcal{E}}$  such that  $\|\nabla_0^{\mathcal{E}} - \nabla^{\mathcal{E}}\|_{C^N} < \varepsilon$  the following inequality holds:

$$d(\nabla_0^{\mathcal{E}}, \nabla^{\mathcal{E}}) \leq C \sup_{c \in \mathcal{C}} (L_g(c)^{-1} \|\text{Hol}_{\nabla^{\mathcal{E}}}(c) \text{Hol}_{\nabla^{\mathcal{E}}}^{-1}(c) - \mathbf{1}\|)^{\alpha}$$

## Idea of proof:

- For fixed  $m \in \mathbb{N}$ , write  $\mathcal{R}_m^{\mathcal{E}}$  for the set of connections such that  $\ker \mathbf{X}_+|_{\Omega_m \otimes \mathcal{E}} = \{0\}$ . Each  $\mathcal{R}_m^{\mathcal{E}}$  is open and  $\mathcal{R}^{\mathcal{E}} = \cap_{m \geq 0} \mathcal{R}_m^{\mathcal{E}}$ . So it suffices to show that  $\mathcal{R}_m^{\mathcal{E}}$  is **dense**.
- Fix a connection  $\nabla^{\mathcal{E}}$ . Introduce  $\Delta_+ := (\mathbf{X}_+)^* \mathbf{X}_+ = -\mathbf{X}_- \mathbf{X}_+$ . This is a **Laplacian type operator**. Then,  $\nabla^{\mathcal{E}}$  has CKTs of degree  $m$  if and only if  $0 \in \text{Spec}(\Delta_+|_{\Omega \otimes \mathcal{E}})$ .
- Hence, we want to perturb  $\nabla^{\mathcal{E}}$  by  $\nabla^{\mathcal{E}} + \Gamma$  (where  $\Gamma \in C^\infty(M, T^*M \otimes \text{End}_{\text{sk}}(\mathcal{E}))$ ) so that  $\Delta_+^\Gamma$  has no eigenvalue at 0.

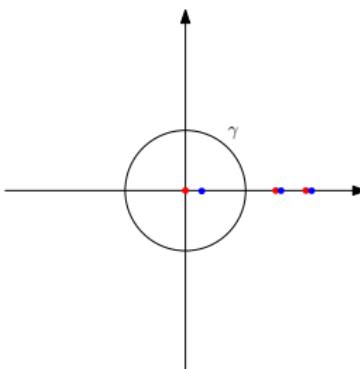


Figure: In red: eigenvalues of  $\Delta_+$ . In blue: eigenvalues of  $\Delta_+^\Gamma$ .

- Let  $(u_1, \dots, u_d)$  be an  $L^2$ -orthonormal basis of CKTs of degree  $m \in \mathbb{N}$ . Consider  $\gamma \subset \mathbb{C}$ , small circle around 0. Define:

$$\Pi^\Gamma := \frac{1}{2i\pi} \int_{\gamma} (z - \Delta_+^\Gamma)^{-1} dz, \lambda^\Gamma = \text{Tr}(\Delta_+^\Gamma \Pi^\Gamma)$$

These correspond to the orthogonal projection on eigenstates inside the circle / the sum of eigenvalues inside the circle. We have  $\lambda^{\Gamma=0} = 0$  and  $\Pi^{\Gamma=0} = \Pi$  is the orthogonal projection on the CKTs of degree  $m$  of  $\nabla^\mathcal{E}$ .

- It suffices to produce  $\Gamma$  arbitrarily small such that  $\lambda^\Gamma > 0$ : indeed, this means that at least one of the CKTs was “ejected from 0”. Hence the number of CKTs of degree  $m$  for  $\nabla^\mathcal{E} + \Gamma$  is at most  $d - 1$ . Then iterate the process.
- Bad luck:  $d\lambda^{\Gamma=0} = 0$ ! What about the **second derivative**?

- Recall that  $\mathbf{X}_+ : C^\infty(M, \Omega_m \otimes \mathcal{E}) \rightarrow C^\infty(M, \Omega_{m+1} \otimes \mathcal{E})$ . The operator  $\mathbf{X}_+$  is of *gradient type* (its **principal symbol** is injective). Moreover:

$$\mathbf{X}_+^* = -\mathbf{X}_- : C^\infty(M, \Omega_{m+1} \otimes \mathcal{E}) \rightarrow C^\infty(M, \Omega_m \otimes \mathcal{E}).$$

Hence:

$$C^\infty(M, \Omega_{m+1} \otimes \mathcal{E}) = \text{ran}(\mathbf{X}_+) \oplus^\perp \ker(\mathbf{X}_-).$$

- If  $A \in C^\infty(M, T^*M \otimes \text{End}_{\text{sk}}(\mathcal{E})) \simeq C^\infty(M, \Omega_1 \otimes \text{End}_{\text{sk}}(\mathcal{E}))$ , and  $f \in C^\infty(M, \Omega_m \otimes \mathcal{E})$ , then

$$Af \in C^\infty(M, \Omega_{m-1} \otimes \mathcal{E}) \oplus C^\infty(M, \Omega_{m+1} \otimes \mathcal{E}),$$

i.e.  $Af = A_- f + A_+ f$ .

### Lemma

$$\forall A \in C^\infty(M, T^*M \otimes \text{End}_{\text{sk}}(\mathcal{E})), \text{d}^2 \lambda^{\Gamma=0}(A, A) = \sum_{i=1}^d \|\pi_{\ker \mathbf{X}_-} A_+ u_i\|_{L^2}^2$$

## Lemma

$$\forall A \in C^\infty(M, T^*M \otimes \text{End}_{\text{sk}}(\mathcal{E})), \text{d}^2\lambda^{\Gamma=0}(A, A) = \sum_{i=1}^d \|\pi_{\ker \mathbf{X}_-} A_+ u_i\|_{L^2}^2$$

- We want to show that  $\text{d}^2\lambda^{\Gamma=0}(A, A) > 0$  for some  $A$ . We argue by **contradiction**. Assume that this is always 0. Then,  $A_+ u_1 \in \text{ran}(\mathbf{X}_+)$  for all  $A$ . Since  $\text{ran}(\mathbf{X}_+) = \ker(\mathbf{X}_-)^{\perp}$ , this implies that  $\forall w \in \ker(\mathbf{X}_-|_{C^\infty(M, \Omega_{m+1} \otimes \mathcal{E})}), \forall A$ :

$$\langle A_+ u_1, w \rangle_{L^2} = 0 = \int_M \langle A_+ u_1, w \rangle_x d\text{vol}(x).$$

- Since  $A$  is arbitrary, it can be localized near any point  $x \in M$  and implies the equality pointwise in  $x$ :

$$\langle A_+ u_1, w \rangle_x = 0, \forall A, \forall w \in \ker(\mathbf{X}_-).$$

We want to show that this implies  $u_1 \equiv 0$  (which is a contradiction since  $\|u_1\|_{L^2} = 1$ ).

**Question:** At a given point  $x \in M$ , what are the values  $w(x)$  that can be achieved by elements of  $\ker(\mathbf{X}_-)$ ?

- Let  $E, F \rightarrow M$  be two vector bundles with  $\text{rank}(E) > \text{rank}(F)$ . Let  $P : C^\infty(M, E) \rightarrow C^\infty(M, F)$  be an operator of **divergence type** i.e. its principal symbol

$$\sigma_P(x, \xi) \in \text{Hom}(E_x, F_x)$$

is **surjective** for every  $(x, \xi) \in T^*M \setminus \{0\}$ .

- For  $x \in M$ , consider the evaluation map:

$$\text{ev}_x : \ker(P) \rightarrow E_x, \quad w \mapsto w(x).$$

### Proposition (Cekic-L. '20)

We have the following (sharp) lower bound:

$$\sum_{\xi \in T_x^* M, |\xi|=1} \ker(\sigma_P(x, \xi)) \subset \text{ran}(\text{ev}_x) \subset E_x.$$

- In particular, we say that  $P$  is of **uniform divergence type** if we have the equality:

$$\sum_{\xi \in T_x^* M, |\xi|=1} \ker(\sigma_P(x, \xi)) = \text{ran}(\text{ev}_x) = E_x$$

- Recall that

$$\langle A_+ u_1, w \rangle_x = 0, \forall A, \forall w \in \ker(\mathbf{X}_-).$$

- As  $A_+$  is injective for  $A \neq 0$ , it suffices to show that  $\mathbf{X}_-$  is of **uniform divergence type**.
- For that, we can forget about the twist (i.e. take  $\mathcal{E} = \mathbb{C}$ ) and consider

$$X_- : C^\infty(M, \Omega_{m+1}) \rightarrow C^\infty(M, \Omega_m).$$

We need to show that

$$\sum_{\xi \in T_x^* M, |\xi|=1} \ker(\sigma_{X_-}(x, \xi)) = \Omega_m(x)$$

- There is a pointwise (in  $x \in M$ ) **identification** of **trace-free symmetric  $m$ -tensors** and **spherical harmonics of degree  $m$** :

$$\pi_m^* : \otimes_S^m T_x^* M|_{0-\text{Tr}} \rightarrow \Omega_m(x), \quad \pi_m^* f(x, v) := f_x(v, \dots, v).$$

Using this identification,  $\sigma_{X_-}(x, \xi) = \iota_{\xi^\sharp}$ .

- Define:

$$W(x) := \sum_{\xi \in T_x^* M, |\xi|=1} \ker(\iota_{\xi^\sharp}) \subset \Omega_m(x).$$

We want to show  $W(x) = \Omega_m(x)$ .

- There is a natural  $\mathrm{SO}(n)$  action on symmetric tensors:  $f$  is a symmetric  $m$ -tensor,  $A \in \mathrm{SO}(n)$ , then  $A^* f = f(A \cdot, \dots, A \cdot)$ .

### Lemma

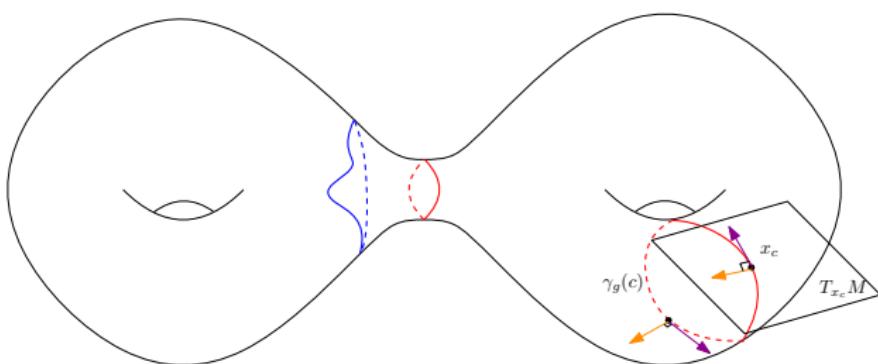
$W(x)$  is invariant by the natural  $\mathrm{SO}(n)$ -action.

- As  $\Omega_m(x)$  is an **irreducible representation** of  $\mathrm{SO}(n)$  (since  $n = \dim(M) \geq 3$ ), this implies that  $W(x) = \Omega_m(x)$ . This ends the proof.

## Definition

We say that  $(M, g)$  is transparent is the tangent bundle equipped with the Levi-Civita connection  $\nabla$  is transparent.

- As we saw, any oriented Riemannian surface is **transparent**.



**Figure:** An oriented Riemannian surface is always transparent.

**Question:** Are there transparent negatively-curved manifolds of dimension  $\geq 3$ ? transparent Anosov manifolds of dimension  $\geq 3$ ?

**Answer:** We do not know! Although we conjecture this should never happen.

### Theorem (Cekic-L. '20)

Assume  $(M, g)$  is negatively-curved and transparent. Then  $\dim(M) = 2, 4$  or  $8$ . Moreover, hyperbolic metrics are never transparent (except in dimension 2).

#### Idea of proof:

- If  $(M, g)$  is transparent, then  $\pi^* TM \rightarrow SM$  is trivialized by  $e_1, \dots, e_n$  such that  $\mathbf{X}e_i := (\pi^* \nabla)_X e_i = 0$ . Observe that the **tautological section**  $s(x, v) := v$  always satisfies  $\mathbf{X}s = 0$ . Moreover, one can choose  $e_2, \dots, e_n \in C^\infty(SM, \pi^* TM)$  to be pointwise (in  $(x, v)$ ) **orthogonal** to  $s$ . A short argument shows that this forces the sphere  $S_x M$  to be parallelizable, hence of dimension 1, 3 or 7.

- On hyperbolic manifolds, one can show that the Levi-Civita connection has **no CKTs of degree  $\geq 2$** . Hence,  $\mathbf{X}e_i = 0$  implies that the  $e_i$  are of degree 1 i.e.

$$e_i(x, v) = \sum_{kj=1}^n \alpha_{jk}^{(i)}(x) v_j e_k(x).$$

Hence, they can be written  $e_i(x, v) = R_i(x)v$ , where  $R_i \in C^\infty(M, \text{End}(TM))$ .

- Using elements of **Clifford algebra theory**, one shows that the  $R_i$  are **parallel almost complex structures** i.e.  $R_i^2 = -\mathbf{1}$  and  $\nabla R_i = 0$ .
- Thus  $(R_2, R_3, R_4)$  endows  $M$  with a **hyperkähler structure**. This forces  $(M, g)$  to be **Ricci-flat**. It can thus not be negatively-curved.

Thank you for your attention !