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(M, g) smooth closed (compact, ∂M = ∅) Riemannian manifold
with negative sectional curvature (or Anosov manifold i.e. with
Anosov geodesic flow on the unit tangent bundle).

SM = {(x , v) ∈ TM | |v | = 1} unit tangent bundle, ϕt : SM → SM

geodesic flow and X := d/dt(ϕt)|t=0 geodesic vector field.

C = set of free homotopy classes 1-to-1↔ closed geodesics (i.e.
∀c ∈ C,∃!γg0(c) ∈ c)

c

γg0(c)
(M; g0)
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Let E → M be a smooth vector bundle over M equipped with a
unitary connection ∇E . Given an (oriented) geodesic γ ⊂ M, denote
by Pγ : Ex− → Ex+ the parallel transport along γ with respect to ∇E ,
where x−, x+ are the two extremal points of γ.

We want to study holonomy of connections along closed geodesics.
For that, we introduce:

Hol∇E : C →
∏
c∈C

U(Exc ), c 7→ Pγg (c),

where xc ∈ γg (c) is arbitrary.
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Figure: Parallel transport along geodesics.
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Question: Does the holonomy of a connection along closed geodesics
determine ∇E up to a gauge equivalent factor?

Two connections ∇E1 and ∇E2 are gauge-equivalent if there exists
p ∈ C∞(M,U(E)) such that ∇E1 f = p−1∇E2 (pf ).

Similar question to the Marked Length Spectrum (MLS) Conjecture.
The MLS is defined as the map

Lg : C → R+, c 7→ `g (γg (c)).

It is conjectured (Burns-Katok ’85) that in negative curvature the
MLS should determine the metric g in the following sense:

Conjecture (Burns-Katok ’85)

If Lg = Lg ′ , then g and g ′ are isometric i.e. there exists a diffeomorhism
φ : M → M isotopic to the identity such that φ∗g = g ′.

Answer 1: Yes for line bundles on Anosov manifolds (Paternain
’09-’13).
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We can even produce stability estimates in the case of line bundles.

Consider L → M a line bundle. Then, for c ∈ C, Hol∇L(c) ∈ C
(and U(1) if ∇L unitary).

Theorem (Cekic-L. ’20)

Assume (M, g) is Anosov. There exists α > 0,C > 0 such that the
following holds:

d(∇L1 ,∇L2 ) ≤ C sup
c∈C

(
Lg (c)−1|Hol∇L1 (c)Hol−1∇L2 (c)− 1|

)α
d(∇L1 ,∇L2 ) is a natural distance on the space of connections which
is 0 iff the connections are gauge-equivalent.

Proof is based on an approximate Livsic Theorem for cocycles and
the microlocal framework introduced in Guillarmou ’17,
Guillarmou-L. ’18, Gouëzel-L. ’19.

Answer 2: However, in higher rank, the situation is more complicated.
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A first case to investigate is that of transparent connections:

Definition

We say that ∇E is transparent if the holonomy is trivial on every closed
geodesics i.e. Hol∇E (c) = 1 for all c ∈ C.

Examples: (1) The trivial connection d on the trivial vector bundle
Cr ×M → M (don’t worry, there are other examples!). (2) On a oriented
Riemannian surface (M, g), the Levi-Civita connection is always
transparent.

xc

γg(c) Txc
M

Figure: An oriented Riemannian surface is always transparent.

Thibault Lefeuvre Generic dynamical properties of connections on vector bundles



Let π : SM → M be the projection. Consider π∗E → SM equipped
with the pullback connection π∗∇E . Parallel transport of sections of
E along geodesics is equivalent to parallel transport of sections of
π∗E along flowline of the geodesic flow.

For (x , v) ∈ SM, denote by

P((x , v), t) : Ex → Eπ(ϕt(x,v)),

the parallel transport map (this is a cocycle). Write X := (π∗∇E)X
(generator of the cocycle).

The connection ∇E is transparent if and only if P((x , v),T ) = 1 for
all T -periodic points (x , v) ∈ SM of the geodesic flow.

Lemma (Folklore)

If ∇E is transparent, then π∗E → SM is trivial and there exists a global
basis (e1, ..., er ) such that ei ∈ C∞(SM, π∗E) and Xei = 0.
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Idea of proof: Consider O(x0, v0) a dense orbit for the geodesic flow.
Consider (e1, ..., er ) an orthonormal basis at Ex0,v0 and parallel-transport
this basis along the orbit.

(x0; v0)

z

z
0

p

O(x0; v0)e1

e2

Figure: Parallel transport along the dense geodesic.
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We now want to study equations of the form Xf = 0, where
f ∈ C∞(SM, π∗E) or more generally Xf = u. These are called
twisted cohomological equations.
A first remark is: given h ∈ C∞(SM), it can be decomposed in
Fourier modes in the sphere fibers h =

∑
m≥0 hm, where

hm ∈ ker(∆V(x) + m(m + n − 2)) =: Ωm(x)

is a spherical harmonics of degree m ∈ N and ∆V is the vertical
Laplacian. (Ωm → M is a vector bundle over M.)

SxM

Mx

Figure: Sphere fibration.
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Let M 3 x 7→ (e1(x), ..., er (x)) be a local orthonormal basis of E
around some point x0 ∈ M. If f ∈ C∞(SM, π∗E), then

f (x , v) =
r∑

k=1

fk(x , v)ek(x), fk ∈ C∞(SM).

Each fk ∈ C∞(SM) can be pointwise decomposed in the sphere
fibers into Fourier modes. Hence:

C∞(SM, π∗E) = ⊕m≥0C
∞(M,Ωm ⊗ E).

We call degree deg(f ) = N, if f = f0 + ...+ fN and fN 6= 0.

We see X : C∞(SM, π∗E)→ C∞(SM, π∗E) (recall X := (π∗∇E)X )
as a differential operator of order 1. One can show
(Guillemin-Kazhdan ’80):

X : C∞(M,Ωm ⊗ E)→ C∞(M,Ωm−1 ⊗ E)⊕ C∞(M,Ωm+1 ⊗ E),

thus X = X− + X+. (X+ is of gradient-type, X− of
divergence-type.)
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Question: If Xf = u and u = u0 + ...+ um ∈ C∞(SM, π∗E) has degree
m, does f have degree m − 1? (or 0 if m = 0)

Theorem (Guillarmou-Paternain-Salo-Uhlmann ’16)

If (M, g) has negative curvature, then deg(f ) <∞.

Proof relies on an L2-energy estimate called the (twisted) Pestov
identity.

Obstruction to having deg(f ) = m − 1 is the existence of twisted
Conformal Killing Tensors, i.e. elements in kerX+|Ωm⊗E 6= {0} for
m ≥ 1. Indeed, assume there are no CKTS of degree m ≥ 1 and
Xf = 0. Then f = f0 + ...+ fN (by [GPSU16]) and Xf = 0 implies
X+fN = 0, hence fN = 0 unless N = 0.

In particular, if ∇E is transparent and has no CKTs, then Xei = 0
imply that deg(ei ) = 0, i.e. ei ∈ C∞(M, E). Then Xei = 0 = ∇Eei .
In other words, (E ,∇E) is isomorphic to the trivial bundle
(Cr ×M, d) with trivial connection.
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Consider (M, g) smooth closed manifold (no curvature/Anosov
assumption!), E → M smooth vector bundle. Denote by RE the set
of connections on E without CKTs.

Theorem (Cekic-L. ’20)

Assume dim(M) ≥ 3. Then RE is residual (among all unitary
connections of regularity C k , k ≥ 2).

Generic absence of CKTs has other consequences. (It is more exactly
the absence of CKTs for the induced connection on the
endomorphism bundle.)

Theorem (Cekic-L. ’20)

Assume (M, g) has negative curvature. Consider E → M and a generic
unitary connection ∇E0 . Then, there exists ε, α,N,C > 0 such that for all
∇E such that ‖∇E0 −∇E‖CN < ε the following inequality holds:

d(∇E0 ,∇E) ≤ C sup
c∈C

(
Lg (c)−1‖Hol∇E (c)Hol−1∇E (c)− 1|

)α
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Idea of proof:
For fixed m ∈ N, write REm for the set of connections such that
kerX+|Ωm⊗E = {0}. Each REm is open and RE = ∩m≥0REm. So it
suffices to show that REm is dense.
Fix a connection ∇E . Introduce ∆+ := (X+)∗X+ = −X−X+. This
is a Laplacian type operator. Then, ∇E has CKTs of degree m if and
only if 0 ∈ Spec(∆+|Ω⊗E).
Hence, we want to perturb ∇E by ∇E + Γ (where
Γ ∈ C∞(M,T ∗M ⊗ Endsk(E))) so that ∆Γ

+ has no eigenvalue at 0.

γ

Figure: In red: eigenvalues of ∆+. In blue: eigenvalues of ∆Γ
+.
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Let (u1, ..., ud) be an L2-orthonormal basis of CKTs of degree
m ∈ N. Consider γ ⊂ C, small circle around 0. Define:

ΠΓ :=
1
2iπ

∫
γ

(z −∆Γ
+)−1dz , λΓ = Tr(∆Γ

+ΠΓ)

These correspond to the orthogonal projection on eigenstates inside
the circle / the sum of eigenvalues inside the circle. We have
λΓ=0 = 0 and ΠΓ=0 = Π is the orthogonal projection on the CKTs of
degree m of ∇E .
It suffices to produce Γ arbitrarily small such that λΓ > 0: indeed,
this means that at least one of the CKTs was “ejected from 0".
Hence the number of CKTs of degree m for ∇E + Γ is at most
d − 1. Then iterate the process.

Bad luck: dλΓ=0 = 0! What about the second derivative?
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Recall that X+ : C∞(M,Ωm ⊗ E)→ C∞(M,Ωm+1 ⊗ E). The
operator X+ is of gradient type (its principal symbol is injective).
Moreover:

X∗+ = −X− : C∞(M,Ωm+1 ⊗ E)→ C∞(M,Ωm ⊗ E).

Hence:
C∞(M,Ωm+1 ⊗ E) = ran(X+)⊕⊥ ker(X−).

If A ∈ C∞(M,T ∗M ⊗ Endsk(E)) ' C∞(M,Ω1 ⊗ Endsk(E)), and
f ∈ C∞(M,Ωm ⊗ E), then

Af ∈ C∞(M,Ωm−1 ⊗ E)⊕ C∞(M,Ωm+1 ⊗ E),

i.e. Af = A−f + A+f .

Lemma

∀A ∈ C∞(M,T ∗M ⊗ Endsk(E)), d2λΓ=0(A,A) =
∑d

i=1 ‖πkerX−A+ui‖2L2
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Lemma

∀A ∈ C∞(M,T ∗M ⊗ Endsk(E)), d2λΓ=0(A,A) =
∑d

i=1 ‖πkerX−A+ui‖2L2

We want to show that d2λΓ=0(A,A) > 0 for some A. We argue by
contradiction. Assume that this is always 0. Then, A+u1 ∈ ran(X+)

for all A. Since ran(X+) = ker(X−)⊥, this implies that
∀w ∈ ker(X−|C∞(M,Ωm+1⊗E)),∀A:

〈A+u1,w〉L2 = 0 =

∫
M

〈A+u1,w〉xd vol(x).

Since A is arbitrary, it can be localized near any point x ∈ M and
implies the equality pointwise in x :

〈A+u1,w〉x = 0,∀A,∀w ∈ ker(X−).

We want to show that this implies u1 ≡ 0 (which is a contradiction
since ‖u1‖L2 = 1).

Question: At a given point x ∈ M, what are the values w(x) that can
be achieved by elements of ker(X−)?
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Let E ,F → M be two vector bundles with rank(E ) > rank(F ). Let
P : C∞(M,E )→ C∞(M,F ) be an operator of divergence type i.e.
its principal symbol

σP(x , ξ) ∈ Hom(Ex ,Fx)

is surjective for every (x , ξ) ∈ T ∗M \ {0}.
For x ∈ M, consider the evaluation map:

evx : ker(P)→ Ex , w 7→ w(x).

Proposition (Cekic-L. ’20)

We have the following (sharp) lower bound:

Σξ∈T∗x M,|ξ|=1 ker(σP(x , ξ)) ⊂ ran(evx) ⊂ Ex .

In particular, we say that P is of uniform divergence type if we have
the equality:

Σξ∈T∗x M,|ξ|=1 ker(σP(x , ξ)) = ran(evx) = Ex
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Recall that
〈A+u1,w〉x = 0,∀A,∀w ∈ ker(X−).

As A+ is injective for A 6= 0, it suffices to show that X− is of
uniform divergence type.

For that, we can forget about the twist (i.e. take E = C) and
consider

X− : C∞(M,Ωm+1)→ C∞(M,Ωm).

We need to show that

Σξ∈T∗x M,|ξ|=1 ker(σX−(x , ξ)) = Ωm(x)

There is a pointwise (in x ∈ M) identification of trace-free
symmetric m-tensors and spherical harmonics of degree m:

π∗m : ⊗m
S T
∗
x M|0−Tr → Ωm(x), π∗mf (x , v) := fx(v , ..., v).

Using this identification, σX−(x , ξ) = ıξ] .
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Define:
W (x) := Σξ∈T∗x M,|ξ|=1 ker(ıξ]) ⊂ Ωm(x).

We want to show W (x) = Ωm(x).

There is a natural SO(n) action on symmetric tensors: f is a
symmetric m-tensor, A ∈ SO(n), then A∗f = f (A·, ...,A·).

Lemma

W (x) is invariant by the natural SO(n)-action.

As Ωm(x) is an irreducible representation of SO(n) (since
n = dim(M) ≥ 3), this implies that W (x) = Ωm(x). This ends the
proof.
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Definition

We say that (M, g) is transparent is the tangent bundle equipped with
the Levi-Civita connection ∇ is transparent.

As we saw, any oriented Riemannian surface is transparent.

xc

γg(c) Txc
M

Figure: An oriented Riemannian surface is always transparent.

Question: Are there transparent negatively-curved manifolds of
dimension ≥ 3? transparent Anosov manifolds of dimension ≥ 3?
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Answer: We do not know! Although we conjecture this should never
happen.

Theorem (Cekic-L. ’20)

Assume (M, g) is negatively-curved and transparent. Then
dim(M) = 2, 4 or 8. Moreover, hyperbolic metrics are never transparent
(except in dimension 2).

Idea of proof:

If (M, g) is transparent, then π∗TM → SM is trivialized by e1, ..., en
such that Xei := (π∗∇)X ei = 0. Observe that the tautological
section s(x , v) := v always satisfies Xs = 0. Moreover, one can
choose e2, ..., en ∈ C∞(SM, π∗TM) to be pointwise (in (x , v))
orthogonal to s. A short argument shows that this forces the sphere
SxM to be parallelizable, hence of dimension 1, 3 or 7.
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On hyperbolic manifolds, one can show that the Levi-Civita
connection has no CKTs of degree ≥ 2. Hence, Xei = 0 implies that
the ei are of degree 1 i.e.

ei (x , v) =
n∑

kj=1

α
(i)
jk (x)vjek(x).

Hence, they can be written ei (x , v) = Ri (x)v , where
Ri ∈ C∞(M,End(TM)).

Using elements of Clifford algebra theory, one shows that the Ri are
parallel almost complex structures i.e. R2

i = −1 and ∇Ri = 0.

Thus (R2,R3,R4) endows M with a hyperkähler structure. This
forces (M, g) to be Ricci-flat. It can thus not be negatively-curved.
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Thank you for your attention !
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