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(M, g0) smooth closed (compact, ∂M = ∅) Riemannian manifold
with negative sectional curvature → “chaotic” geodesic flow

Figure: Image courtesy of Frédéric Faure

Question: What are the geometric quantities which determine the
Riemannian manifold (M, g0)? In other words, can we find a
quantity A(g0) such that if A(g) = A(g0), then g

isom∼ g0?
Example: On the topological side, an oriented surface is determined
by a single number: its genus g ∈ N.
A first guess? The spectrum of the Laplacian {0 = λ0 < λ1 ≤ ...}?
Milnor ’55, Kac ’66: “Can one hear the shape of a drum?”
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The marked length spectrum

Answer: No! Counterexamples in constant curvature (Vigneras
’80).
The length spectrum i.e. the collection of lengths of closed
geodesics is (under some mild assumptions) determined by the
spectrum of the Laplacian. Conclusion: One needs a stronger
notion to be able to determine the geometry of a manifold.

C = set of free homotopy classes 1-to-1↔ closed g0-geodesics (i.e.
∀c ∈ C,∃!γg0(c) ∈ c)

c

γg0(c)
(M; g0)
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The marked length spectrum

Definition (Marked length spectrum)

Lg0 : C → R∗+, c 7→ `g0(γc),

where `g0(γc) Riemannian length computed with respect to g0.

This map is invariant by the action of Diff0(M), the group of
diffeomorphisms isotopic to the identity i.e. Lφ∗g0 = Lg0 .

Conjecture (Burns-Katok ’85)

The marked length spectrum of a negatively-curved manifold determines
the metric (up to isometries) i.e.: if g and g0 have negative sectional
curvature, same marked length spectrum Lg = Lg0 , then ∃ φ : M → M

smooth diffeomorphism isotopic to the identity such that φ∗g = g0.
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Known results:

Guillemin-Kazhdan ’80, Croke-Sharafutdinov ’98: proof of the
infinitesimal version of the problem (for a deformation (gs)s∈(−1,1) of
the metric g0): Lgs = Lg0 =⇒ ∃φs , φ∗s gs = g0,

Croke ’90, Otal ’90: proof for negatively-curved surfaces,

Katok ’88: proof for g conformal to g0,

Besson-Courtois-Gallot ’95, Hamenstädt ’99: proof when
(M, g0) is a locally symmetric space.

Theorem (Guillarmou-L. ’18)

Let (M, g0) be a negatively-curved manifold. Then ∃k ∈ N∗, ε > 0 such
that: if ‖g − g0‖C k < ε and Lg = Lg0 , then g is isometric to g0.
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Theorem (Guillarmou-L. ’18)

Let (M, g0) be a negatively-curved manifold. Then ∃k ∈ N∗, ε > 0 such
that: if ‖g − g0‖C k < ε and Lg = Lg0 , then g is isometric to g0.

Still holds in the more general setting of Anosov manifolds (i.e.
manifolds on which the geodesic flow is uniformly hyperbolic), under
an additional assumption of nonpositive curvature in dim ≥ 3.
Proof relies on finding good stability estimates for the differential of
the operator g 7→ L(g) = Lg/Lg0 :

dLg0 f = 1/2× I g0
2 f : c 7→ 1

`(γg0(c))

∫ `(γg0 (c))

0
fγ(t)(γ̇(t), γ̇(t))dt,

with γg0(c) unique closed geodesic in c ∈ C, that is:

‖f ‖C0 ≤ C‖dLg0(f )‖θ`∞‖f ‖1−θC1 , ∀f ∈ ker δ

Proof heavily relies on microlocal analysis and hyperbolic dynamical
systems.
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Theorem (Guillarmou-L. ’18)

Let (M, g0) be a negatively-curved manifold. Then ∃k ∈ N∗, ε > 0 such
that: if ‖g − g0‖C k < ε and Lg = Lg0 , then g is isometric to g0.

Still holds in the more general setting of Anosov manifolds under an
additional assumption of nonpositive curvature in dim ≥ 3.
Proof relies on finding good stability estimates for the differential of
the operator g 7→ L(g) = Lg/Lg0 :

dLg0 f = 1/2× I g0
2 f : c 7→ 1

`(γg0(c))

∫ `(γg0 (c))

0
fγ(t)(γ̇(t), γ̇(t))dt,

with γg0(c) unique closed geodesic in c ∈ C.

Theorem (Guillarmou-L. ’18, Goüezel-L. ’19)

For all 0 < α < β, there exists C , θ > 0 such that:

‖f ‖Cα ≤ C‖I g0
2 (f )‖θ`∞‖f ‖1−θCβ

, ∀f ∈ ker δ
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Theorem (Guillarmou-Knieper-L. ’19)

Let (M, g0) be a negatively-curved manifold. Then ∃k ∈ N∗, ε > 0 such
that if ‖g − g0‖C k < ε, there exists φ : M → M such that:

‖φ∗g − g0‖H−1/2 ≤ C lim sup
j→+∞

| log Lg (cj)/Lg0(cj)|1/2.

Proof relies on the notion of geodesic stretch (Croke-Fathi ’90,
Knieper ’95) and the thermodynamic formalism (Bowen, Ruelle
’70s ...)

This can be seen as a distance on isometry classes.
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Distances on Teichmüller space

M = S is an oriented surface of genus g ≥ 2, Teichmüller space
T = {hyperbolic metrics} /Diff0(S).

Weil-Petersson/pressure metric: Given g ∈ T ,
T ∗T ≡ {holomorphic differentials}. In local isothermal coordinates,
if g = λ|dz |2 and ξdz2, γdz2 ∈ T ∗T are two holomorphic
differentials:

〈ξdz2, γdz2〉WP = Re
∫
S

ξγ

λ
dLeb

Thurston’s (asymmetric) distance:

dT (g1, g2) = lim sup
j→+∞

log(Lg2(cj)/Lg1(cj))

It is also the “best” Lipschitz constant Lip(F ) when trying to find a
quasi-isometry (S , g1)

F→ (S , g2).
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Pressure metric

Theorem (Guillarmou-Knieper-L. ’19)

Let M be a smooth manifold. There exists a pressure metric G on
M := Met<0(M)/Diff0(M) enjoying a uniform coercive estimate:

Gg (f , f ) ≥ C‖f ‖2H−1/2

If M = S is a surface, this metric G restricts to (a multiple of) the
Weil-Petersson metric on Teichmüller space.

Question: Geometry of (M,G )? This is an infinite-dimensional
manifold!

Thibault Lefeuvre On the rigidity of Riemannian manifolds
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Thurston’s distance

Theorem (Guillarmou-Knieper-L. ’19)

Let M be a smooth manifold. Let E = Met<0,h=1(M)/Diff0(M) be the
subspace of metrics with topological entropy equal to 1. Then

dT (g1, g2) := lim sup
j→+∞

log Lg2(cj)/Lg1(cj)

still defines a distance (like in Teichmüller space) in a neighborhood of
the diagonal in E × E .

On Teichmüller space, Thurston proves that dT is actually induced
by an (asymmetric) Finsler norm:

‖f ‖F = sup
m∈Mesinv,erg

∫
SM

f (v , v)dm(v)

Conjecture: This distance is still induced by the same Finsler norm.
This would actually solve the marked length spectrum rigidity
conjecture. Thibault Lefeuvre On the rigidity of Riemannian manifolds
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The differential of the marked length spectrum is the X-ray transform

I g0
2 : C∞(M, Sym2T ∗M)→ `∞(C),

defined by

I g0
2 f : c 7→ 1

`(γg0(c))

∫ `(γg0 (c))

0
fγ(t)(γ̇(t), γ̇(t))dt,

The space `∞(C) is not well-suited for analysis (the map I g0
2 does

not seem to have closed range for instance). Somehow, we would
like an operator which captures the information not only on closed
geodesics but also on non-closed geodesics.

Question: How to construct such an operator?
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A tensor f ∈ C∞(M, Sym2T ∗M) can be identified to a function
π∗2 f ∈ C∞(SM) on the unit tangent bundle SM by the pullback
map π∗2 defined as

π∗2 f (x , v) = fx(v , v)

Using the geodesic flow ϕg0
t on SM, the X-ray transform can be

rewritten as

I g0
2 f (c) =

1
`(γg0(c))

∫ `(γg0 (c))

0
etX0π∗2 f (x , v)dt,

where etX0u(x , v) = u(ϕg0
t (x , v)) is the propagator, Xg0 geodesic

vector field.
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Instead of integrating on closed geodesics, we want to integrate on
“any geodesics” to capture more information, i.e. we would like to
define for any (x , v) ∈ SM (unit tangent bundle) and u ∈ C∞(SM)

a map

“I g0u(x , v) =

∫ `(γg0 (x,v))

0
etX0u(x , v)dt ′′

Of course, `(γg0(x , v)) = +∞ “most of the time”!

More generally, we want to make sense of the operator
∫ +∞
0 etX0dt.

A formal computation would yield∫ +∞

0
etX0dt = −X−1

0

Question: What are etX0 and X−1
0 if X0 is a (geodesic) vector field

on a negatively-curved manifold? These operators exhibit the strong
chaotic behaviour of the geodesic flow!
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The propagator etX0

Figure: The evolution of the distribution u by the propagator etX0 . Image courtesy:
Frédéric Faure.
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Meromorphic extension of the resolvent (X0 ± λ)−1

We introduce the resolvents

R±(λ) := (X0 ± λ)−1

and we would like to define R±(0).

They are initially defined on <(λ) > 0 and admit a
meromorphic extension to C when acting on
anisotropic Sobolev spaces with poles of finite ranks:
the Pollicott-Ruelle resonances (Liverani ’04,
Butterley-Liverani ’07, Faure-Sjöstrand ’11,
Dyatlov-Zworski ’13, Faure-Tsuji ’13 ’17),

<(z)

=(z)

0

spectral gap

For the diffeo case, see Blank-Keller-Liverani ’02,
Butterley-Liverani ’07, Baladi-Tsuji ’07 ’08, Baladi ’18,
0 is a pole of order 1 and Res0((X ± λ)−1) = 1⊗ 1,
Define (Guillarmou ’17)

Π2 := π2∗(R
hol
+ (0)− Rhol

− (0))π∗2+π2∗1⊗ 1π∗2
Thibault Lefeuvre On the rigidity of Riemannian manifolds
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Properties of Π2

Think of Π2 as “π2∗ ◦
∫
R etXdt ◦ π∗2 ”. This operator has also an

expression in terms of the variance of the geodesic flow:

〈Π2f , f 〉L2 = VarX0
µLiouville

(π∗2 f )

Theorem (Guillarmou ’17, Guillarmou-L. ’18, Gouëzel-L. ’19)

Π2 is a pseudodifferential of order −1, elliptic on tensors in ker δ,

One has: kerΠ2|ker δ = ker I2|ker δ = {0},
This implies the elliptic estimate: ‖f ‖Hs ≤ C‖Π2f ‖Hs+1 ,∀f ∈ ker δ

Proof relies on microlocal tools developed by Faure-Sjostrand ’11,
Dyatlov-Zworski ’13.
Problem: Link between Π2 and I2? This is done via an approximate
Livsic Theorem (Goüezel-L ’19, Guedes Bonthonneau-L ’19):

‖Π2f ‖Hs+1 ≤ C‖I2f ‖θ`∞‖f ‖1−θHs+1871

Thibault Lefeuvre On the rigidity of Riemannian manifolds
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Approximate Livsic theorem

Recall that

Π2 := π2∗ (Rhol
+ (0)− Rhol

− (0)+1⊗ 1)︸ ︷︷ ︸
=Π

π∗2

By construction Π does not see coboundaries namely Π(Xu) = 0 for
all u ∈ Hs(SM), s > 0.

Theorem (Goüezel-L. ’19)

There exists an orthogonal decomposition of functions

C 1(SM) 3 f = Xu + h, ‖h‖Hs ≤ C‖If ‖1−θ`∞ ‖f ‖
1−θ
C1

Apply this to π∗2 f = Xu + h:

‖f ‖Hs−1 ≤ ‖Π2f ‖Hs = ‖π2∗Π(π∗2 f )‖Hs

= ‖π2∗Π(��Xu + h)‖Hs

≤ ‖π2∗Πh‖Hs ≤ ‖h‖Hs ≤ C‖I2f ‖1−θ`∞ ‖f ‖
1−θ
C1

Thibault Lefeuvre On the rigidity of Riemannian manifolds
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Manifolds with hyperbolic cusps

(M, g0) is a cusp manifold i.e. a smooth non-compact Riemannian
manifold with negative curvature s.t. M = M0 ∪` Z`. The ends Z`
are real hyperbolic cusps i.e. Z` ' [a,+∞)y × (Rd/Λ)θ, where Λ is
a unimodular lattice and

g |Z` '
dy2 + dθ2

y2

C = set of hyperbolic free homotopy classes (in opposition to the
parabolic ones wrapping exclusively around the cusps).

Z1

Z2

Z3

M0
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Manifolds with hyperbolic cusps

Theorem (Guedes Bonthonneau-L. ’19)

Let (M, g0) be a cusp manifold. Then ∃k ∈ N∗, ε > 0 and a codimension
1 submanifold N of the space of isometry classes such that: if
O(g) ∈ N , ‖g − g0‖y−kC k < ε and Lg = Lg0 , then g is isometric to g0.

Z1

Z2

Z3

M0
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Manifolds with boundary

Herglotz 1905, Wiechert-Zoeppritz 1907
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A simple manifold (M, g0) is a manifold with strictly convex
boundary, no conjugate points and no trapped set (the exponential
map is a diffeomorphism at each point). In particular, between each
pair of points on the boundary (x , y) ∈ ∂M × ∂M, there exists a
unique geodesic γx,y .

The boundary distance function is the map

dg : ∂M × ∂M → R+, (x , y) 7→ `g0(γx,y ).

The map g 7→ dg is invariant by the action of the group of
diffeomorphisms φ : M → M such that φ|∂M = id.

Conjecture (Michel ’81)

The boundary distance function determines the metric i.e. if g and g0 are
simple and dg = dg0 , there exists a diffeomorphism φ : M → M such that
φ|∂M = id and φ∗g = g0.

Thibault Lefeuvre On the rigidity of Riemannian manifolds
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Manifolds with boundary

Known results:

Otal ’89: proof for surfaces of negative curvature.

Croke-Dairbekov-Sharafutdinov ’00, Stefanov-Uhlmann ’04:
local rigidity results.

Pestov-Uhlmann ’05: proof for arbitrary simple surfaces.

Burago-Ivanov ’10: metrics close to the euclidean one.

Stefanov-Uhlmann-Vasy-17: proof for manifolds admitting a
foliation by strictly convex hypersurfaces.
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Manifolds with boundary

We assume that (M, g0) has strictly convex boundary, no conjugate
points and a hyperbolic trapped set.

K

Γ+

Γ
−

M

@M

@
−
SM

@+SM
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Manifolds with boundary

The marked length spectrum is replaced by a similar quantity : the
marked boundary distance function dg . This map assigns to each
pair of points (x , y) ∈ ∂M × ∂M and each free homotopy class [γ]

of curves with endpoints x and y , the length of the unique geodesic
joining x to y . (Guillarmou ’17, Guillarmou-Mazzucchelli ’18)

Theorem (L. ’19)

Let (M, g0) be such a manifold and further assume that it has negative
curvature if dim(M) ≥ 3. Then, there exists ε > 0, k ∈ N∗ such that: if
‖g − g0‖C k < ε and dg = dg ′ , then ∃φ : M → M such that φ|∂M = id
and φ∗g = g0.
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Asymptotically hyperbolic surfaces

An AH surface (M, g0) is a conformally compact Riemannian
manifold such that near ∂M, there exists a boundary defining
function y : M → R+ s.t.

g0 =
dy2 + h(y , x)dx2

y2

Example: any deformation with compact support of the hyperbolic
plane H2, hyperbolic surface with three funnels (the infinite pair of
pants), ...
A notion of renormalized marked boundary distance Dg between pair
of points on the boundary at infinity can be defined
(Graham-Guillarmou-Stefanov-Uhlmann ’17).

Theorem (L’ 19)

If g and g0 are AH and Dg = Dg0 , then g is isometric to g0 by a
diffeomorphism fixing the boundary ∂M.
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Perspectives

On this topic:

The global conjecture of Burns-Katok (who knows ...).

Investigate the generalized Thurston’s distance dT in variable
curvature. Maybe something can be done on surfaces using the
theory of laminations. Also, investigate the geometry of Met/Diff0

endowed with the pressure metric (generalized Weil-Petersson
metric).

Prove a local rigidity result for the unmarked length spectrum. This
is linked to a conjecture due to Sarnak on the finiteness of
isospectral isometry classes.

Investigate the strictly convex foliation assumption of
Stefanov-Uhlmann-Vasy: can simple manifolds be foliated? This
would solve Michel’s conjecture.
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Broader questions:

Spectral/microlocal study of non-uniformly hyperbolic/parabolic
flows: description of the spectral measure on the real line, study of
the resolvent, mixing properties for the flow, ...
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Thank you for your attention!
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