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The marked length spectrum Setting of the problem

New results

e (M, go) smooth closed (compact, M = (}) Riemannian manifold
with negative sectional curvature — “chaotic” geodesic flow

7,

zone with
negative
geodesie curvature

Figure: Image courtesy of Frédéric Faure
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@ Question: What are the geometric quantities which determine the
Riemannian manifold (M, go)? In other words, can we find a

quantity A(go) such that if A(g) = A(go), then g o go?
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e (M, go) smooth closed (compact, M = (}) Riemannian manifold
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@ Question: What are the geometric quantities which determine the
Riemannian manifold (M, go)? In other words, can we find a
quantity A(go) such that if A(g) = A(go), then g R go?

o Example: On the topological side, an oriented surface is determined
by a single number: its genus g € N.
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The marked length spectrum Setting of the problem
New results

e (M, go) smooth closed (compact, M = (}) Riemannian manifold
with negative sectional curvature — “chaotic” geodesic flow

4»11(' with

negative
geodesie curvature

Figure: Image courtesy of Frédéric Faure

@ Question: What are the geometric quantities which determine the
Riemannian manifold (M, go)? In other words, can we find a
quantity A(go) such that if A(g) = A(go). then g R go?

o Example: On the topological side, an oriented surface is determined
by a single number: its genus g € N.

@ A first guess? The spectrum of the Laplacian {0 = Ao < A1 < ...}7
Milnor '55, Kac '66: “Can one hear the shape of a drum?”
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The marked length spectrum

Setting of the problem
New results

The marked length spectrum

e Answer: No! Counterexamples in constant curvature (Vigneras
'80).

@ The length spectrum i.e. the collection of lengths of closed
geodesics is (under some mild assumptions) determined by the
spectrum of the Laplacian. Conclusion: One needs a stronger
notion to be able to determine the geometry of a manifold.

@ C = set of free homotopy classes Y87 Closed go-geodesics (i.e.
Ve € C, T (c) € ¢)
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The marked length spectrum Setting of the problem

New results

The marked length spectrum

Definition (Marked length spectrum)

Lg :C = RY, = Lg(7e)s

where £, (7c) Riemannian length computed with respect to go.

o This map is invariant by the action of Diff°(M), the group of
diffeomorphisms isotopic to the identity i.e. Ly«gy = Lg,.

Conjecture (Burns-Katok '85)

The marked length spectrum of a negatively-curved manifold determines
the metric (up to isometries) i.e.: if g and go have negative sectional
curvature, same marked length spectrum Ly = Lg,, then3 ¢: M — M
smooth diffeomorphism isotopic to the identity such that ¢*g = go.
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The marked length spectrum Setting of the problem

New results

Known results:

@ Guillemin-Kazhdan ’80, Croke-Sharafutdinov '98: proof of the
infinitesimal version of the problem (for a deformation (gs)se(—1,1) of
the metric go): Lg, = Lg, = 3, L8 = go.

@ Croke '90, Otal '90: proof for negatively-curved surfaces,
o Katok '88: proof for g conformal to go,

o Besson-Courtois-Gallot ‘95, Hamenstadt '99: proof when
(M, go) is a locally symmetric space.

Theorem (Guillarmou-L. '18)

Let (M, go) be a negatively-curved manifold. Then 3k € N* & > 0 such
that: if ||g — gollcx < € and Ly = Lg,, then g is isometric to gp.
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The marked length spectrum Setting of the problem

New results

Theorem (Guillarmou-L. '18)

Let (M, go) be a negatively-curved manifold. Then 3k € N* e > 0 such
that: if ||g — gollck < € and Lg = Lg,, then g is isometric to gp.

o Still holds in the more general setting of Anosov manifolds (i.e.
manifolds on which the geodesic flow is uniformly hyperbolic), under
an additional assumption of nonpositive curvature in dim > 3.

@ Proof relies on finding good stability estimates for the differential of
the operator g — L(g) = Lg/Lg,:

1 (7€)
dﬁof:12><lg°f:cr—>7/ £ (v(2),4())dt,
8 / 2 g(’ygo(c)) o ’Y(t)( ( ) fY( ))

with 74, (c) unique closed geodesic in ¢ € C, that is:
Ifllce < ClldLey(FE=IFlIE",  VF € kerd

@ Proof heavily relies on microlocal analysis and hyperbolic dynamical
systems.
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The marked length spectrum Setting of the problem

New results

Theorem (Guillarmou-L. '18)

Let (M, go) be a negatively-curved manifold. Then 3k € N* & > 0 such
that: if ||g — gollcx < € and Ly = Lg,, then g is isometric to gp.

@ Still holds in the more general setting of Anosov manifolds under an
additional assumption of nonpositive curvature in dim > 3.
@ Proof relies on finding good stability estimates for the differential of
the operator g — L(g) = Lg/Lg,:
1

Z("/go(c)) ‘ ) .
{(7g(c)) /o 0 (3(1), 3(1))dt,

with 74, (c) unique closed geodesic in ¢ € C.

dLgf =1/2 X IEF : c s

Theorem (Guillarmou-L. '18, Goiiezel-L. '19)

For all 0 < « < 3, there exists C,0 > 0 such that:

1fllca < CNE(A)Ie= IFIIES",  VF € kerd
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The marked length spectrum Setting of the problem

New results

Theorem (Guillarmou-Knieper-L. '19)

Let (M, go) be a negatively-curved manifold. Then 3k € N* ¢ > 0 such
that if ||g — gol|cx < &, there exists ¢ : M — M such that:

|¢*g — gollu-1/2 < Climsup|log Lg(c;)/Lg,(c;)[*/>.

J—+o0

@ Proof relies on the notion of geodesic stretch (Croke-Fathi "90,
Knieper '95) and the thermodynamic formalism (Bowen, Ruelle
'70s ...)

@ This can be seen as a distance on isometry classes.
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The marked length spectrum Setting of the problem

New results

Distances on Teichmiiller space

M = S is an oriented surface of genus g > 2, Teichmiiller space

T = {hyperbolic metrics} /Diffo(S).

o Weil-Petersson/pressure metric: Given g € T,
T*T = {holomorphic differentials}. In local isothermal coordinates,
if g = M dz|? and £dz?,vdz? € T*T are two holomorphic
differentials:

(€dz?,vdz*)wp = Re /?dLeb
S

@ Thurston's (asymmetric) distance:

dr(g1,82) = limsuplog(Lg,(c)/Le (<))

J—+o0

It is also the "best” Lipschitz constant Lip(F) when trying to find a
quasi-isometry (S, g1) L (S, &)
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The marked length spectrum

Setting of the problem
New results

Pressure metric

Theorem (Guillarmou-Knieper-L. '19)

Let M be a smooth manifold. There exists a pressure metric G on
M := Met.o(M)/Diffo(M) enjoying a uniform coercive estimate:

Ge(f, ) > CIfl3-22

If M =S is a surface, this metric G restricts to (a multiple of) the
Weil-Petersson metric on Teichmiiller space.

Question: Geometry of (M, G)? This is an infinite-dimensional
manifold!
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The marked length spectrum Setting of the problem

New results

Thurston's distance

Theorem (Guillarmou-Knieper-L. '19)

Let M be a smooth manifold. Let & = Meto p=1(M)/Diffy(M) be the
subspace of metrics with topological entropy equal to 1. Then

dr(g1,82) := limsuplog L, (c;)/Le, (c)

J—+o0

still defines a distance (like in Teichmiiller space) in a neighborhood of
the diagonal in £ x E.

@ On Teichmiiller space, Thurston proves that dr is actually induced
by an (asymmetric) Finsler norm:
Iflle = sup / f(v,v)dm(v)
meEMesiny,erg J SM

o Conjecture: This distance is still induced by the same Finsler norm.
@ This would actually solve the marked length spectrum rigidity
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Techniques used in the proofs Tl e

@ The marked length spectrum

© Techniques used in the proofs
@ The X-ray transform

© Other results and perspectives
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The X-ray transform

Techniques used in the proofs Tl e

Theorem (Guillarmou-L. '18, Gotiezel-L. '19)

For all 0 < oo < 3, there exists C,0 > 0 such that:

Ifllca < CIE(AE=IFIES’,  VF € kerd
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The X-ray transform

Techniques used in the proofs Tl e

@ The differential of the marked length spectrum is the X-ray transform
I£° . C>°(M,Sym? T*M) — £°°(C),

defined by

. 1 (16 (<)) G050
/°f:CH7/ £ (1), 4(1))dt,
2 (g () Jo ")

@ The space ¢°°(C) is not well-suited for analysis (the map /5° does
not seem to have closed range for instance). Somehow, we would
like an operator which captures the information not only on closed
geodesics but also on non-closed geodesics.

@ Question: How to construct such an operator?
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The X-ray transform

Techniques used in the proofs Tl e

o A tensor f € C>(M,Sym?T*M) can be identified to a function
maf € C*°(SM) on the unit tangent bundle SM by the pullback
map 75 defined as

maf(x,v) = f(v,v)

@ Using the geodesic flow ¢$° on SM, the X-ray transform can be
rewritten as

1 50 (0))
w / ° etXOTI-;f(X, V)dt,
0

@ﬂngw
8o

where e u(x, v) = u(p$(x, v)) is the propagator, X, geodesic
vector field.
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The X-ray transform

Techniques used in the proofs Tl e

@ Instead of integrating on closed geodesics, we want to integrate on
“any geodesics” to capture more information, i.e. we would like to
define for any (x,v) € SM (unit tangent bundle) and u € C*°(SM)
a map

“180 _ Z(’YgO(X’V)) tXo i
1 u(x,v) = e”u(x, v)dt
0

Of course, {(7g,(x,v)) = +00 “most of the time"!

@ More generally, we want to make sense of the operator f0+°o etXodt.
A formal computation would yield

+o00
/ eedt = —X;
0

o Question: What are e and X, ! if X, is a (geodesic) vector field
on a negatively-curved manifold? These operators exhibit the strong
chaotic behaviour of the geodesic flow!
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The X-ray transform

Techniques used in the proofs Tl e

The propagator e

Figure: The evolution of the distribution u by the propagator e?Xe. Image courtesy:
Frédéric Faure.

Thibault Lefeuvre ty of Riemannian manifolds



The X-ray transform
Microlocal techniques

Techniques used in the proofs

Meromorphic extension of the resolvent (Xo + \)~?

@ We introduce the resolvents

|
spectral gap
[ —

Ri(A) == (Xo £ A)~*

and we would like to define Ry(0). R
.o
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The X-ray transform
Microlocal techniques

Techniques used in the proofs

Meromorphic extension of the resolvent (Xo + \)~?

@ We introduce the resolvents

|
spectral gap
[—

Ri(A) == (Xo £ A)~*

and we would like to define Ry(0). R
o They are initially defined on R()\) > 0 and admit a .. +

meromorphic extension to C when acting on !

anisotropic Sobolev spaces with poles of finite ranks: .

the Pollicott-Ruelle resonances (Liverani "04,
Butterley-Liverani ‘07, Faure-Sjostrand '11,
Dyatlov-Zworski '13, Faure-Tsuji ‘13 '17),
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The X-ray transform
Microlocal techniques

Techniques used in the proofs

Meromorphic extension of the resolvent (Xo + \)~?

@ We introduce the resolvents

|
spectral gap
[—

Ri(A) == (Xo £ A)~*

and we would like to define Ry(0). R
o They are initially defined on R()\) > 0 and admit a .. +

meromorphic extension to C when acting on !

anisotropic Sobolev spaces with poles of finite ranks: .

the Pollicott-Ruelle resonances (Liverani "04,
Butterley-Liverani ‘07, Faure-Sjostrand '11,
Dyatlov-Zworski '13, Faure-Tsuji ‘13 '17),
o For the diffeo case, see Blank-Keller-Liverani '02,
Butterley-Liverani ‘07, Baladi-Tsuji '07 "08, Baladi '18,
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The X-ray transform
Microlocal techniques

Techniques used in the proofs

Meromorphic extension of the resolvent (Xo + \)~?

@ We introduce the resolvents

|
spectral gap
[—

Ri(A) == (Xo £ A)~*

and we would like to define Ry(0). R
o They are initially defined on R()\) > 0 and admit a .. +

meromorphic extension to C when acting on !

anisotropic Sobolev spaces with poles of finite ranks: .

the Pollicott-Ruelle resonances (Liverani "04,
Butterley-Liverani ‘07, Faure-Sjostrand '11,
Dyatlov-Zworski '13, Faure-Tsuji ‘13 '17),
o For the diffeo case, see Blank-Keller-Liverani '02,
Butterley-Liverani ‘07, Baladi-Tsuji '07 "08, Baladi '18,
@ 0 is a pole of order 1 and Reso((X £\) 1) =1®1,
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The X-ray transform
Microlocal techniques

Techniques used in the proofs

Meromorphic extension of the resolvent (Xo + \)~?

@ We introduce the resolvents

|
spectral gap
[—

Ri(A) == (Xo £ A)~*

and we would like to define Ry(0). R
o They are initially defined on R()\) > 0 and admit a .. +

meromorphic extension to C when acting on !

anisotropic Sobolev spaces with poles of finite ranks: .

the Pollicott-Ruelle resonances (Liverani "04,
Butterley-Liverani ‘07, Faure-Sjostrand '11,
Dyatlov-Zworski '13, Faure-Tsuji ‘13 '17),
o For the diffeo case, see Blank-Keller-Liverani '02,
Butterley-Liverani ‘07, Baladi-Tsuji '07 "08, Baladi '18,
@ 0 is a pole of order 1 and Reso((X £\) 1) =1®1,
o Define (Guillarmou "17)

Mz := 2, (R1(0) — RM(0))m5 +75. 1 & 175
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The X-ray transform
Microlocal techniques

Techniques used in the proofs

Properties of [,

@ Think of My as “ms, o ]R eXdt o w3". This operator has also an
expression in terms of the variance of the geodesic flow:

(Maf , )2 = Varl® (m5f)

HLiouville

Theorem (Guillarmou ’17, Guillarmou-L. '18, Gouézel-L. '19)

MM, is a pseudodifferential of order —1, elliptic on tensors in ker 9,
One has: kerMy|kers = ker b|kers = {0},
This implies the elliptic estimate: ||f||ns < C||Maf ||ys+2, Vi € kero

Proof relies on microlocal tools developed by Faure-Sjostrand '11,
Dyatlov-Zworski '13.

@ Problem: Link between N, and 1?7 This is done via an approximate
Livsic Theorem (Goiiezel-L '19, Guedes Bonthonneau-L '19):

M2 ([ < CllEF |G | F [l ema
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The X-ray transform

Techniques used in the proofs Microlocal techniques

Approximate Livsic theorem

@ Recall that
My := ma, (RY(0) — RPN(0) +1 2 1) 73

=

@ By construction N does not see coboundaries namely M(Xu) =0 for
all u e H*(SM),s > 0.

Theorem (Goiiezel-L. '19)

There exists an orthogonal decomposition of functions

CYSM) > f=Xu+h, |hlu < CIIIFIE0)FIL°

o Apply this to m3f = Xu + h:
[Fll =2 < [Maf[lps = (|2, (w2 ) e
= |2, NUXT + h)| 1
< |lm2. Al e < [[Bllne < CllEF(" 1l
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Other results and perspectives EASESPECEIVES

@ The marked length spectrum

© Techniques used in the proofs

© Other results and perspectives
@ Other results
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Other results
Perspectives

Other results and perspectives

Manifolds with hyperbolic cusps

e (M, go) is a cusp manifold i.e. a smooth non-compact Riemannian
manifold with negative curvature s.t. M = Mg U, Z;. The ends Z,
are real hyperbolic cusps i.e. Z; ~ [a,+00), x (RY/N)g, where A is
a unimodular lattice and

dy? + do?
glz, ~ 2
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Other results and perspectives

Manifolds with hyperbolic cusps

e (M, go) is a cusp manifold i.e. a smooth non-compact Riemannian
manifold with negative curvature s.t. M = Mg U, Z;. The ends Z,
are real hyperbolic cusps i.e. Z; ~ [a,+00), x (RY/N)g, where A is
a unimodular lattice and

dy? + do?
glz, ~ 2

e C = set of hyperbolic free homotopy classes (in opposition to the
parabolic ones wrapping exclusively around the cusps).
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Other results and perspectives EASESPECEIVES

Manifolds with hyperbolic cusps

Theorem (Guedes Bonthonneau-L. '19)

Let (M, go) be a cusp manifold. Then 3k € N*,& > 0 and a codimension
1 submanifold N of the space of isometry classes such that: if

O(g) EN,

g — 8oll,-«cx <€ and Lg = Lg,, then g is isometric to go.
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Other results and perspectives Perspectives

Manifolds with boundary

Epicentre

/ N
Zone d'omly Zone d’ombre

— Ondes S
— Ondes P

o Herglotz 1905, Wiechert-Zoeppritz 1907
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Other results and perspectives EASESPECEIVES

@ A simple manifold (M, go) is a manifold with strictly convex
boundary, no conjugate points and no trapped set (the exponential
map is a diffeomorphism at each point). In particular, between each
pair of points on the boundary (x,y) € 9M x OM, there exists a
unique geodesic 7y .

@ The boundary distance function is the map
dg : OM x OM — Ry, (x,y) = Lgo(Vx,y)-

@ The map g — dg is invariant by the action of the group of
diffeomorphisms ¢ : M — M such that ¢|snm = id.

Conjecture (Michel '81)

The boundary distance function determines the metric i.e. if g and go are
simple and dg = dg,, there exists a diffeomorphism ¢ : M — M such that

dlom = id and ¢*g = go.
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Other results and perspectives EASESPECEIVES

Manifolds with boundary

Known results:

Otal '89: proof for surfaces of negative curvature.

Croke-Dairbekov-Sharafutdinov '00, Stefanov-Uhlmann ’04:
local rigidity results.

Pestov-Uhlmann '05: proof for arbitrary simple surfaces.

Burago-lvanov '10: metrics close to the euclidean one.

o Stefanov-Uhlmann-Vasy-17: proof for manifolds admitting a
foliation by strictly convex hypersurfaces.
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Other results and perspectives

Manifolds with boundary

@ We assume that (M, go) has strictly convex boundary, no conjugate
points and a hyperbolic trapped set.

9, SM
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Other results and perspectives EASESPECEIVES

Manifolds with boundary

@ The marked length spectrum is replaced by a similar quantity : the
marked boundary distance function dg. This map assigns to each
pair of points (x, y) € M x OM and each free homotopy class [v]
of curves with endpoints x and y, the length of the unique geodesic
joining x to y. (Guillarmou 17, Guillarmou-Mazzucchelli "18)

Theorem (L. '19)

Let (M, go) be such a manifold and further assume that it has negative
curvature if dim(M) > 3. Then, there exists € > 0, k € N* such that: if
llg — gollcx < € and dg = dg/, then 3¢ : M — M such that ¢|am = id
and ¢*g = go.
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Other results and perspectives EASESPECEIVES

Asymptotically hyperbolic surfaces

@ An AH surface (M, go) is a conformally compact Riemannian
manifold such that near M, there exists a boundary defining
function y : M — R s.t.

~dy? + h(y,x)dx?
0= ——>5 "
y

o Example: any deformation with compact support of the hyperbolic
plane H?, hyperbolic surface with three funnels (the infinite pair of
pants), ...

@ A notion of renormalized marked boundary distance D, between pair
of points on the boundary at infinity can be defined
(Graham-Guillarmou-Stefanov-Uhlmann '17).

Theorem (L' 19)

If g and gy are AH and D, = Dg,, then g is isometric to go by a
diffeomorphism fixing the boundary OM.
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Other results and perspectives Perspectives

Perspectives

On this topic:

@ The global conjecture of Burns-Katok (who knows ...).

@ Investigate the generalized Thurston's distance dt in variable
curvature. Maybe something can be done on surfaces using the
theory of laminations. Also, investigate the geometry of Met/Diffy
endowed with the pressure metric (generalized Weil-Petersson
metric).

@ Prove a local rigidity result for the unmarked length spectrum. This
is linked to a conjecture due to Sarnak on the finiteness of
isospectral isometry classes.

@ Investigate the strictly convex foliation assumption of
Stefanov-Uhlmann-Vasy: can simple manifolds be foliated? This
would solve Michel's conjecture.
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Other results and perspectives

Broader questions:

@ Spectral/microlocal study of non-uniformly hyperbolic/parabolic
flows: description of the spectral measure on the real line, study of
the resolvent, mixing properties for the flow, ...
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Thank you for your attention!
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