

Local rigidity of manifolds with hyperbolic cusps

Thibault Lefeuvre

Joint work with Yannick Guedes Bonthonneau

Institut de Mathématique d'Orsay

November 13th 2019

1 The marked length spectrum

- Setting of the problem in the closed case
- The case of manifolds with hyperbolic cusps

2 Ingredients of proof in the closed case

- Taylor expansion of the marked length spectrum
- The normal operator

3 What is new in the case of cusp manifolds?

- Key ingredients
- A geometric calculus

- (M, g_0) smooth closed (compact, $\partial M = \emptyset$) Riemannian manifold with **negative sectional curvature**.
- \mathcal{C} = set of free homotopy classes $\overset{1\text{-to-}1}{\leftrightarrow}$ closed g_0 -geodesics (i.e. $\forall c \in \mathcal{C}, \exists! \gamma_{g_0}(c) \in c$)

Definition (The marked length spectrum)

$$L_{g_0} : \left| \begin{array}{l} \mathcal{C} \rightarrow \mathbb{R}_+^* \\ c \mapsto \ell_{g_0}(\gamma_c), \end{array} \right.$$

$\ell_{g_0}(\gamma_c)$ Riemannian length computed with respect to g_0 .

- (M, g_0) smooth closed (compact, $\partial M = \emptyset$) Riemannian manifold with **negative sectional curvature**.
- $\mathcal{C} = \text{set of free homotopy classes} \xrightarrow{1\text{-to-}1} \text{closed } g_0\text{-geodesics}$ (i.e. $\forall c \in \mathcal{C}, \exists! \gamma_{g_0}(c) \in c$)

Definition (The marked length spectrum)

$$L_{g_0} : \left| \begin{array}{l} \mathcal{C} \rightarrow \mathbb{R}_+^* \\ c \mapsto \ell_{g_0}(\gamma_c), \end{array} \right.$$

$\ell_{g_0}(\gamma_c)$ Riemannian length computed with respect to g_0 .

Conjecture (Burns-Katok '85)

*The marked length spectrum of a negatively-curved manifold **determines the metric** (up to isometries) i.e.: if g and g_0 have negative sectional curvature, same marked length spectrum $L_g = L_{g_0}$, then $\exists \phi : M \rightarrow M$ smooth diffeomorphism **isotopic to the identity** such that $\phi^*g = g_0$.*

- Analogue of Michel's conjecture of rigidity for simple manifolds with boundary (**the boundary distance function should determine the metric** up to isometries),
- Why the **marked length spectrum** ? The **length spectrum** (:= collection of lengths regardless of the homotopy) **does not determine the metric** (counterexamples by **Vigneras '80**)
- Conjecture can be generalized to **Anosov manifolds** i.e. manifolds on which the geodesic flow is **uniformly hyperbolic**.

Conjecture (Burns-Katok '85)

*The marked length spectrum of a negatively-curved manifold **determines the metric** (up to isometries) i.e.: if g and g_0 have negative sectional curvature, same marked length spectrum $L_g = L_{g_0}$, then $\exists \phi : M \rightarrow M$ smooth diffeomorphism **isotopic to the identity** such that $\phi^*g = g_0$.*

- Analogue of Michel's conjecture of rigidity for simple manifolds with boundary (**the boundary distance function should determine the metric** up to isometries),
- Why the **marked** length spectrum ? The **length spectrum** (:= collection of lengths regardless of the homotopy) **does not determine the metric** (counterexamples by **Vigneras '80**)
- Conjecture can be generalized to **Anosov manifolds** i.e. manifolds on which the geodesic flow is **uniformly hyperbolic**.

Conjecture (Burns-Katok '85)

*The marked length spectrum of a negatively-curved manifold **determines the metric** (up to isometries) i.e.: if g and g_0 have negative sectional curvature, same marked length spectrum $L_g = L_{g_0}$, then $\exists \phi : M \rightarrow M$ smooth diffeomorphism **isotopic to the identity** such that $\phi^*g = g_0$.*

- Analogue of Michel's conjecture of rigidity for simple manifolds with boundary (**the boundary distance function should determine the metric** up to isometries),
- Why the **marked** length spectrum ? The **length spectrum** (:= collection of lengths regardless of the homotopy) **does not determine the metric** (counterexamples by **Vigneras '80**)
- Conjecture can be generalized to **Anosov manifolds** i.e. manifolds on which the geodesic flow is **uniformly hyperbolic**.

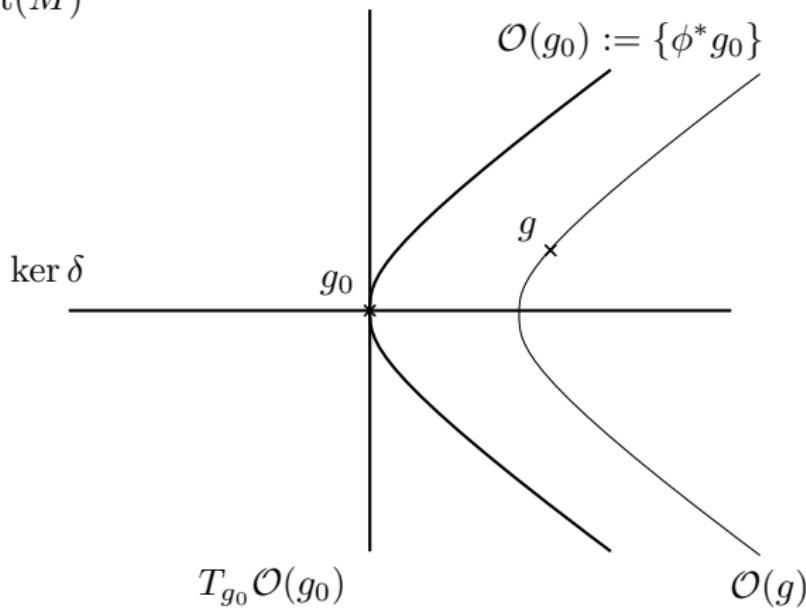
Known results:

- **Guillemin-Kazhdan '80, Croke-Sharafutdinov '98:** proof of the infinitesimal version of the problem (for a deformation $(g_s)_{s \in (-1,1)}$ of the metric g_0),
- **Croke '90, Otal '90:** proof for negatively-curved surfaces,
- **Katok '88:** proof for g conformal to g_0 ,
- **Besson-Courtois-Gallot '95, Hamenstädt '99:** proof when (M, g_0) is a locally symmetric space.

Theorem (Guillarmou-L. '18, Guillarmou-Knieper-L. '19)

Let (M, g_0) be a negatively-curved manifold. Then $\exists k \in \mathbb{N}^*, \varepsilon > 0$ such that: if $\|g - g_0\|_{C^k} < \varepsilon$ and $L_g = L_{g_0}$, then g is isometric to g_0 .

$\text{Met}(M)$



- (M, g_0) is a **cusp manifold** i.e. a smooth non-compact Riemannian manifold with negative curvature s.t. $M = M_0 \cup_{\ell} Z_{\ell}$. The ends Z_{ℓ} are **real hyperbolic cusps** i.e. $Z_{\ell} \simeq [a, +\infty)_y \times (\mathbb{R}^d / \Lambda)_{\theta}$, where Λ is a **unimodular lattice** and

$$g|_{Z_{\ell}} \simeq \frac{dy^2 + d\theta^2}{y^2}$$

- \mathcal{C} = set of **hyperbolic** free homotopy classes (in opposition to the **parabolic** ones wrapping exclusively around the cusps).

- (M, g_0) is a **cusp manifold** i.e. a smooth non-compact Riemannian manifold with negative curvature s.t. $M = M_0 \cup_{\ell} Z_{\ell}$. The ends Z_{ℓ} are **real hyperbolic cusps** i.e. $Z_{\ell} \simeq [a, +\infty)_y \times (\mathbb{R}^d / \Lambda)_{\theta}$, where Λ is a **unimodular lattice** and

$$g|_{Z_{\ell}} \simeq \frac{dy^2 + d\theta^2}{y^2}$$

- \mathcal{C} = set of **hyperbolic** free homotopy classes (in opposition to the **parabolic** ones wrapping exclusively around the cusps).

Theorem (Guedes Bonthonneau-L. '19)

Let (M, g_0) be a cusp manifold. Then $\exists k \in \mathbb{N}^*, \varepsilon > 0$ and a **codimension 1** submanifold \mathcal{N} of the space of isometry classes such that: if $\mathcal{O}(g) \in \mathcal{N}$, $\|g - g_0\|_{\mathcal{Y}^{-k} C^k} < \varepsilon$ and $L_g = L_{g_0}$, then g is isometric to g_0 .

- Known results: proof for surfaces by **Cao '95**.

1 The marked length spectrum

- Setting of the problem in the closed case
- The case of manifolds with hyperbolic cusps

2 Ingredients of proof in the closed case

- Taylor expansion of the marked length spectrum
- The normal operator

3 What is new in the case of cusp manifolds?

- Key ingredients
- A geometric calculus

Idea of proof of

Theorem (Guillarmou-L. '18, Guillarmou-Knieper-L. '19)

Let (M, g_0) be a negatively-curved manifold. Then $\exists k \in \mathbb{N}^*, \varepsilon > 0$ such that: if $\|g - g_0\|_{C^k} < \varepsilon$ and $L_g = L_{g_0}$, then g is isometric to g_0 .

- ➊ **Solenoidal reduction:** there exists a diffeomorphism ϕ such that: $\delta(\phi^*g) = 0$. So, WLOG, we can assume $g - g_0 \in \ker \delta$.
- ➋ **Taylor expansion** of the ratio of the length spectra:

$$\mathcal{L}(g) := L_g / L_{g_0} = 1 + d\mathcal{L}_{g_0}(g - g_0) + \mathcal{O}(\|g - g_0\|_{C^3}^2)$$

- ➌ If $L_g = L_{g_0}$, then $\|d\mathcal{L}_{g_0}(g - g_0)\|_{\ell^\infty} \leq C\|g - g_0\|_{C^3}^2$. Thus, if we have a **stability estimate** for $d\mathcal{L}_{g_0}$ on $\ker \delta$ like

$$\|f\|_{C^3} \leq C\|d\mathcal{L}_{g_0}(f)\|_{\ell^\infty},$$

we are done.

Idea of proof of

Theorem (Guillarmou-L. '18, Guillarmou-Knieper-L. '19)

Let (M, g_0) be a negatively-curved manifold. Then $\exists k \in \mathbb{N}^*, \varepsilon > 0$ such that: if $\|g - g_0\|_{C^k} < \varepsilon$ and $L_g = L_{g_0}$, then g is isometric to g_0 .

- ① **Solenoidal reduction:** there exists a diffeomorphism ϕ such that: $\delta(\phi^*g) = 0$. So, WLOG, we can assume $g - g_0 \in \ker \delta$.
- ② **Taylor expansion of the ratio of the length spectra:**

$$\mathcal{L}(g) := L_g / L_{g_0} = 1 + d\mathcal{L}_{g_0}(g - g_0) + \mathcal{O}(\|g - g_0\|_{C^3}^2)$$

- ③ If $L_g = L_{g_0}$, then $\|d\mathcal{L}_{g_0}(g - g_0)\|_{\ell^\infty} \leq C\|g - g_0\|_{C^3}^2$. Thus, if we have a **stability estimate** for $d\mathcal{L}_{g_0}$ on $\ker \delta$ like

$$\|f\|_{C^2} \leq C\|d\mathcal{L}_{g_0}(f)\|_{\ell^\infty}^\theta \|f\|_{C^{1789}}^{1-\theta},$$

we are done (using some interpolation estimates).

Definition (Geodesic X-ray transform)

$$I_2^{g_0} : C^0(M, \otimes_S^2 T^* M) \rightarrow \ell^\infty(\mathcal{C}),$$

$$I_2^{g_0} f : \mathcal{C} \ni c \mapsto \frac{1}{\ell(\gamma_{g_0}(c))} \int_0^{\ell(\gamma_{g_0}(c))} f_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t)) dt,$$

with $\gamma_{g_0}(c)$ unique closed geodesic in c .

- $d\mathcal{L}_{g_0} = 1/2 \times I_2^{g_0}$,
- In negative curvature, $\ker I_2^{g_0} = T_{g_0} \mathcal{O}(g_0)$ (**Croke-Shafutdinov '98**). In other words, $I_2^{g_0}$ is **injective on $\ker \delta$** .

Question: **Stability estimates** for the X-ray transform $I_2^{g_0}$?

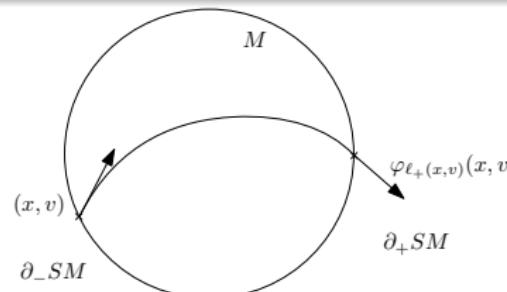
Theorem (Guillarmou-L. '18, Goüzel-L. '19)

Let $0 < \alpha < \beta$. Then, $\exists C, \theta > 0$ such that:

$$\forall f \in C^\beta \cap \ker \delta, \quad \|f\|_{C^\beta} \leq C \|I_2^{g_0} f\|_{\ell^\infty}^\theta \|f\|_{C^\alpha}^{1-\theta}$$

- On a simple manifold, for $(x, v) \in \partial_- SM$,

$$\begin{aligned}
 I_2 f(x, v) &= \int_0^{\ell_+(x, v)} f_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t)) dt \\
 &= \int_0^{+\infty} \pi_2^* f_{\text{ext}}(\varphi_t(x, v)) dt \\
 &= (I \circ \pi_2^*) f_{\text{ext}}(x, v)
 \end{aligned}$$

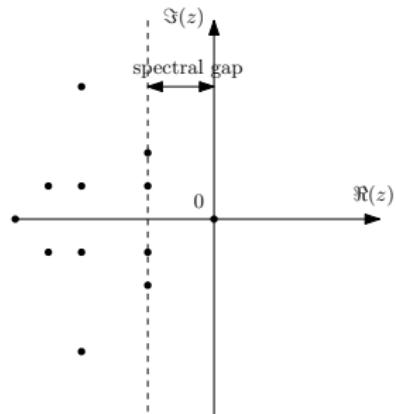


- The **normal operator** $\Pi_2 := I_2^* I_2 : C^\infty(M, \otimes_S^2 T^* M) \rightarrow$ is
 - a Ψ DO of order -1 ,
 - formally selfadjoint and nonnegative,
 - elliptic on $\ker \delta$.**
- One can write $\Pi_2 := \pi_{2*} I^* / \pi_2^*$, with $I^* I = \int_{-\infty}^{+\infty} e^{tX} dt$. If $R_\pm(\lambda) := (X \pm \lambda)^{-1}$ denotes the **resolvent of the generator of the geodesic flow**, then $I^* I = R_+(0) - R_-(0)$. Thus:

$$\Pi_2 = I_2^* I_2 = \pi_{2*} (R_+(0) - R_-(0)) \pi_2^*$$

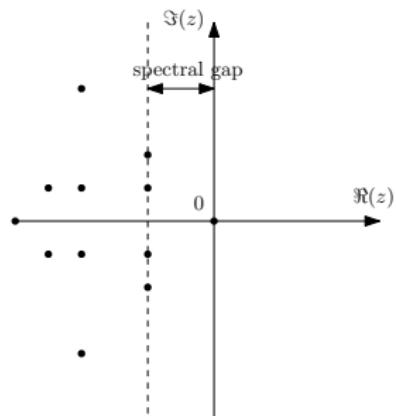
Meromorphic extension of the resolvent $(X \pm \lambda)^{-1}$

- Idea (**Guillarmou '17**): In the closed case, mimick the case of a simple manifold,
- $R_{\pm}(\lambda) := (X \pm \lambda)^{-1}$, initially defined on $\Re(\lambda) > 0$, admit a meromorphic extension to \mathbb{C} when acting on anisotropic Sobolev spaces with poles of finite ranks: the Pollicott-Ruelle resonances (**Liverani '04, Butterley-Liverani '07, Faure-Sjöstrand '11, Dyatlov-Zworski '13, Faure-Tsujii '13 '17**),
 - 0 is a pole of order 1 and $\text{Res}_0((X \pm \lambda)^{-1})$
 - Define



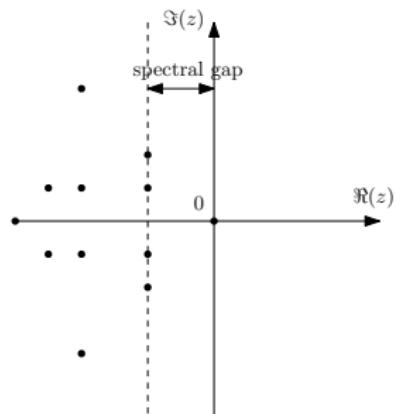
Meromorphic extension of the resolvent $(X \pm \lambda)^{-1}$

- Idea (Guillarmou '17): In the closed case, mimick the case of a simple manifold,
- $R_{\pm}(\lambda) := (X \pm \lambda)^{-1}$, initially defined on $\Re(\lambda) > 0$, admit a meromorphic extension to \mathbb{C} when acting on anisotropic Sobolev spaces with poles of finite ranks: the Pollicott-Ruelle resonances (Liverani '04, Butterley-Liverani '07, Faure-Sjöstrand '11, Dyatlov-Zworski '13, Faure-Tsujii '13 '17),



Meromorphic extension of the resolvent $(X \pm \lambda)^{-1}$

- Idea (Guillarmou '17): In the closed case, mimick the case of a simple manifold,
- $R_{\pm}(\lambda) := (X \pm \lambda)^{-1}$, initially defined on $\Re(\lambda) > 0$, admit a meromorphic extension to \mathbb{C} when acting on anisotropic Sobolev spaces with poles of finite ranks: the Pollicott-Ruelle resonances (Liverani '04, Butterley-Liverani '07, Faure-Sjöstrand '11, Dyatlov-Zworski '13, Faure-Tsujii '13 '17),

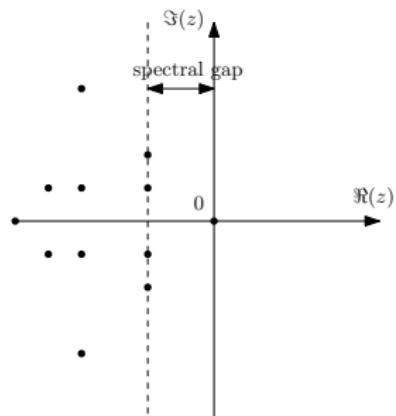


- 0 is a pole of order 1 and $\text{Res}_0((X \pm \lambda)^{-1}) = \mathbf{1} \otimes \mathbf{1}$,
- Define

Meromorphic extension of the resolvent $(X \pm \lambda)^{-1}$

- Idea (**Guillarmou '17**): In the closed case, mimick the case of a simple manifold,
- $R_{\pm}(\lambda) := (X \pm \lambda)^{-1}$, initially defined on $\Re(\lambda) > 0$, admit a meromorphic extension to \mathbb{C} when acting on anisotropic Sobolev spaces with poles of finite ranks: the Pollicott-Ruelle resonances (**Liverani '04, Butterley-Liverani '07, Faure-Sjöstrand '11, Dyatlov-Zworski '13, Faure-Tsujii '13 '17**),
- 0 is a pole of order 1 and $\text{Res}_0((X \pm \lambda)^{-1}) = \mathbf{1} \otimes \mathbf{1}$,
- Define

$$\Pi_2 := \pi_{2*}(R_+^{\text{hol}}(0) - R_-^{\text{hol}}(0))\pi_2^* + \pi_{2*}\mathbf{1} \otimes \mathbf{1}\pi_2^*$$



Properties of Π_2

- A more “explicit” expression of Π_2 : if $f_1, f_2 \in C^\infty(M, \otimes_S^2 T^*M)$ have 0-average, then

$$\langle \Pi_2 f_1, f_2 \rangle_{L^2} = \int_{-\infty}^{+\infty} \langle e^{tX} \pi_2^* f_1, \pi_2^* f_2 \rangle_{L^2(SM, d\mu_{\text{Liouville}})} dt$$

Think of Π_2 as “ $\pi_{2*} \circ \int_{\mathbb{R}} e^{tX} dt \circ \pi_2^*$ ”.

Theorem (Guillarmou '17, Guillarmou-L. '18, Gouëzel-L. '19)

- Π_2 is a Ψ DO of order -1 , **elliptic** on tensors in $\ker \delta$,
- One has: $\ker \Pi_2 = \ker I_2 = T_{g_0} \mathcal{O}(g_0)$,
- This implies the **elliptic estimate**:

$$\|f\|_{H^s} \leq C \|\Pi_2 f\|_{H^{s+1}}, \quad \forall f \in \ker \delta$$

Question: link between Π_2 and I_2 ? We are looking for an estimate like:

$$\|\Pi_2 f\|_{H^{s+1}} \leq C \|I_2 f\|_{\ell^\infty}^\theta \|f\|_{H^{s+1}}^{1-\theta}$$

Approximate Livsic theorem

- Recall that

$$\Pi_2 := \pi_{2*} \underbrace{\left(R_+^{\text{hol}}(0) - R_-^{\text{hol}}(0) + 1 \otimes 1 \right)}_{=\Pi} \pi_2^*$$

- By construction Π does not see **coboundaries** namely $\Pi(Xu) = 0$ for all $u \in H^s(SM)$, $s > 0$. There exists an orthogonal decomposition of functions (**Gouëzel-L. '19**)

$$H^s(SM) \ni f = Xu + h, \quad \|h\|_{H^s} \leq C \|If\|_{\ell^\infty}^{1-\theta} \|f\|_{C^1}^{1-\theta}$$

- Apply this to $\pi_2^* f = Xu + h$:

$$\begin{aligned} \|\Pi_2 f\|_{H^s} &= \|\pi_{2*} \Pi(\pi_2^* f)\|_{H^s} \\ &= \|\pi_{2*} \Pi(Xu + h)\|_{H^s} \\ &\leq \|\pi_{2*} \Pi h\|_{H^s} \\ &\leq \|h\|_{H^s} \leq C \|If\|_{\ell^\infty}^{1-\theta} \|f\|_{C^1}^{1-\theta} \end{aligned}$$

1 The marked length spectrum

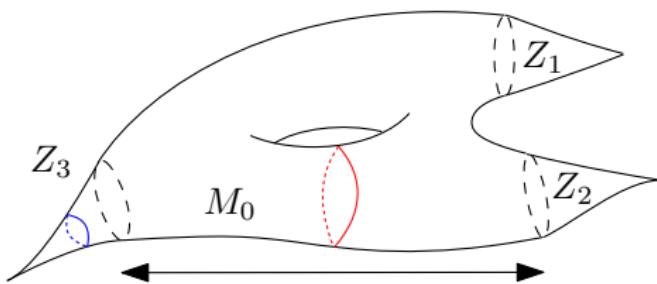
- Setting of the problem in the closed case
- The case of manifolds with hyperbolic cusps

2 Ingredients of proof in the closed case

- Taylor expansion of the marked length spectrum
- The normal operator

3 What is new in the case of cusp manifolds?

- Key ingredients
- A geometric calculus



Key ingredients of the previous proof

- ➊ Meromorphic extension of $(X \pm \lambda)^{-1}$ to a strip $\{\Re(\lambda) > -1/1515\}$ to define Π_2 ,
- ➋ Stability estimate $\|f\|_{H^s} \leq C\|\Pi_2 f\|_{H^{s+1}}$ for $f \in \ker \delta$,
- ➌ Approximate Livšic Theorem.

Key ingredients of the previous proof

- ➊ Meromorphic extension of $(X \pm \lambda)^{-1}$ to a strip $\{\Re(\lambda) > -1/1515\}$ to define Π_2 ,
- ➋ Stability estimate $\|f\|_{H^s} \leq C\|\Pi_2 f\|_{H^{s+1}}$ for $f \in \ker \delta$,
- ➌ Approximate Livšic Theorem.

Key ingredients of the previous proof

- ➊ Meromorphic extension of $(X \pm \lambda)^{-1}$ to a strip $\{\Re(\lambda) > -1/1515\}$ to define Π_2 ,
- ➋ Stability estimate $\|f\|_{H^s} \leq C\|\Pi_2 f\|_{H^{s+1}}$ for $f \in \ker \delta$,
- ➌ Approximate Livšic Theorem.

Key ingredients of the previous proof

- ➊ Meromorphic extension of $(X \pm \lambda)^{-1}$ to a strip $\{\Re(\lambda) > -1/1515\}$ to define Π_2 ,
- ➋ Stability estimate $\|f\|_{H^s} \leq C\|\Pi_2 f\|_{H^{s+1}}$ for $f \in \ker \delta$,
- ➌ Approximate Livsic Theorem.

Key ingredients of the previous proof

- Meromorphic extension of $(X \pm \lambda)^{-1}$ acting on anisotropic Sobolev spaces proved on a small strip $\{\Re(\lambda) > -\delta\}$ by **Guedes Bonthonneau-Weich '17**. This is done by combining the **Dyatlov-Zworski '13** approach (radial points estimates) with ideas inspired by **Melrose's b-calculus**.
- The estimate $\|f\|_{H^s} \leq C\|\Pi_2 f\|_{H^{s+1}}$ for $f \in \ker \delta$ is based on a parametrix construction for Π_2 **with a compact remainder**.

Question: How to produce compact remainders?

A geometric calculus

- **Guedes Bonthonneau '16** introduced on cusps a “geometric” calculus $\cup_{m \in \mathbb{R}} \Psi^m$ in which Π_2 will fit. It is an extension of the algebra of differential operators generated by the orthonormal vectors

$$y\partial_y, \quad y\partial_\theta$$

- An elliptic Ψ DO $P \in \Psi^m$ can be inverted in this calculus: $QP = \mathbf{1} + R$, with R smoothing i.e. $R : H^{-s} \rightarrow H^s$ bounded for all $s \in \mathbb{R}$. **But R is not compact!** because the inclusion $H^{s_1} \hookrightarrow H^{s_2}$ for $s_1 > s_2$ is **no longer compact**. However $y^{\rho-\epsilon} H^{s_1} \hookrightarrow y^\rho H^{s_2}$ is compact ($\epsilon > 0$).

Two important remarks:

- The lack of compactness in Kato-Rellich comes from **θ -independant** functions in the cusp. In other words, for $s_1 > s_2$, $H_{\perp}^{s_1} \hookrightarrow H_{\perp}^{s_2}$ is **compact**, where the \perp -subscript denotes functions f such that

$$\forall y \in [a, +\infty), \quad \int_{(\mathbb{R}/\Lambda)^d} f(y, \theta) d\theta = 0$$

- The elliptic operators P we are interested in (like Π_2) are **geometric** and thus “commute” with ∂_θ in the sense that $[P, \partial_\theta] = \text{compact}$. In other words, they **act diagonally on Fourier modes in the θ -variable** (modulo compact junk).

Conclusion: In order to invert a geometric elliptic Ψ DO P modulo compact remainder, one needs to **invert it exactly** on θ -independent functions i.e. construct Q', R' with R' smoothing such that $Q'P = \mathbf{1} + R'$ where given $f \in H^s$, the θ -independent component of $R'f$ is ≈ 0 (i.e. fast decay at infinity).

Conclusion: In order to invert a geometric elliptic Ψ DO P modulo compact remainder, one needs to **invert it exactly** on θ -independent functions i.e. construct Q', R' with R' smoothing such that $Q'P = \mathbf{1} + R'$ where given $f \in H^s$, the θ -independent component of $R'f$ is ≈ 0 (i.e. fast decay at infinity).

- Given such a geometric operator P , it also **commutes with the generator of the dilation $y\partial_y$ on θ -independent functions** i.e. $[P, y\partial_y] = \text{compact}$ on such functions. In the $r = \log y$ variable, $[P, \partial_r] = \text{compact}$.
- Thus, modulo compact junk, **on θ -independent functions and sufficiently high in the cusp**, P looks like a Fourier multiplier. In other words, for $\xi \in \mathbb{R}$, $P(e^{i\xi r}) \approx I_P(i\xi) e^{i\xi r}$, with $I_P(i\xi) \in \mathbb{C}$. More generally, for $\lambda = \rho + i\xi \in \mathbb{C}$,

$$P(e^{\lambda r}) = P(e^{\rho r} e^{i\xi r}) \approx I_P(\lambda) e^{\lambda r}$$

Here $\rho \in \mathbb{R}$ is a **weight** and corresponds to looking at the operator P on the spaces $y^{d/2} y^\rho H^s$.

$$P(e^{\lambda r}) = P(e^{\rho r} e^{i\xi r}) \approx I_P(\lambda) e^{\lambda r}$$

- We call $\mathbb{C} \ni \lambda \mapsto I_P(\lambda) \in \mathbb{C}$ the **indicial operator** associated to P , it is a **holomorphic function** of λ . Like in b-calculus, the inversion of P modulo compact remainder on the spaces $y^{d/2} y^\rho H^s$ requires

$$I_P(\rho + i\xi) \neq 0, \quad \forall \xi \in \mathbb{R}$$

- If P acts on a **vector bundle** $E \rightarrow Z$, $I(\lambda)$ is matrix-valued. This is the case for $P = \Pi_2$.
- P may also act on a **product manifold** $F \times Z$, in which case $I(\lambda)$ takes values in (pseudo)differential operators acting on $C^\infty(F)$. This is the case for the geodesic vector field X acting on SM , unit tangent bundle of a cusp surface. In the (y, θ, ϕ) coordinates,

$$X = \cos \phi y \partial_y + \sin \phi y \partial_\theta + \sin \phi \partial_\phi$$

Thus: $I_X(\lambda) = \lambda \cos \phi + \sin \phi \partial_\phi \in \text{Diff}^1(\mathbb{S}^1)$.

Back to Π_2 !

- $\mathbb{C} \ni \lambda \mapsto I_{\Pi_2}(\lambda)$ is a matrix-valued holomorphic function of λ .

Question: What are its indicial roots i.e. for which values is it invertible? We need to look its action on symmetric 2-tensors of the form

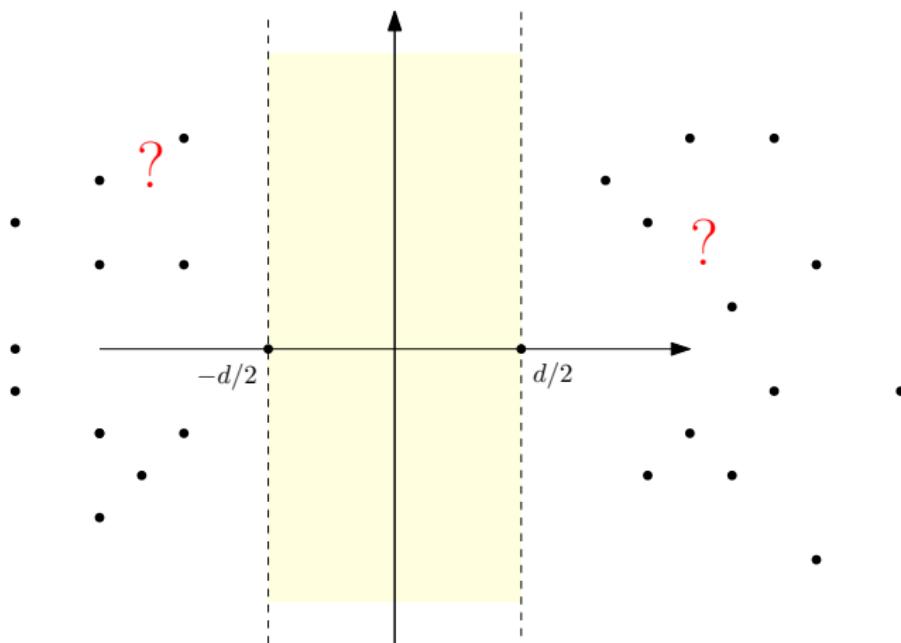
$$f = a \frac{dy^2}{y^2} + b^i \frac{dy \otimes d\theta_i + d\theta_i \otimes dy}{2y^2} + c^{ij} \frac{d\theta_{ij}^2}{y^2}$$

i.e. compute $I_{\Pi_2}(\lambda)f = y^{-\lambda}\Pi_2(y^\lambda f)$.

- However, we are only interested in Π_2 acting on $\ker \delta$. This implies the linear relations $b_i = 0$, $a(\lambda - 1) + \text{Tr}(c) = 0$ for f . Moreover, it is **sufficient** to compute $\langle I_{\Pi_2}(\lambda)f, f \rangle$ and show that this is $\neq 0$ when $f \neq 0$. This implies a “**lower bound**” on the indicial roots of Π_2 .

- We obtain:

$$\begin{aligned}
 \langle I_{\Pi_2}(\lambda)f, f \rangle &= \frac{\text{vol}(\mathbb{S}^{d-1})\pi}{(\lambda+1)(d+1-\lambda)} \frac{\Gamma\left(\frac{\lambda}{2}\right)\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma\left(\frac{\lambda+1}{2}\right)\Gamma\left(\frac{d+1-\lambda}{2}\right)} \\
 &\times \left[|a|^2 \left(1 + \frac{|d-\lambda|^2}{d} + \frac{\lambda(d-\lambda)}{d} + |d-\lambda|^2 \frac{\lambda(d-\lambda)}{d(d+2)} \right) \right. \\
 &\quad \left. + 2 \operatorname{Tr} |c|^2 \frac{\lambda(d-\lambda)}{d(d+2)} \right]
 \end{aligned}$$



no indicial roots

Figure: Lower bound on the indicial roots of $I_{\Pi_2}(\lambda+d/2)$.

Theorem (Guedes Bonthonneau-L. '19)

For $s > 0$ small enough, there exists $C, \theta > 0$ such that:

$$\forall f \in C^1 \cap \ker \delta, \quad \|f\|_{H^{-1-s}} \leq C \|I_2 f\|_{\ell^\infty}^\theta \|f\|_{C^1}^{1-\theta}$$

Thank you for your attention!

