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@ The marked length spectrum
@ Setting of the problem in the closed case
@ The case of manifolds with hyperbolic cusps

© Ingredients of proof in the closed case
@ Taylor expansion of the marked length spectrum
@ The normal operator

© What is new in the case of cusp manifolds?
o Key ingredients
@ A geometric calculus
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The marked length spectrum Setting of the problem in the closed case

The case of manifolds with hyperbolic cusps

e (M, go) smooth closed (compact, M = (}) Riemannian manifold
with negative sectional curvature.

Definition (The marked length spectrum)

C — Ry
€= Ego(76)7

Ly (7<) Riemannian length computed with respect to gp.

go -
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The marked length spectrum Setting of the problem in the closed case

The case of manifolds with hyperbolic cusps

e (M, go) smooth closed (compact, M = (}) Riemannian manifold
with negative sectional curvature.

@ C = set of free homotopy classes "8 Closed go-geodesics (i.e.
Ve € C, T (c) € ¢)

Definition (The marked length spectrum)

C — Ry
€= Ego(76)7

Ly (7<) Riemannian length computed with respect to gp.

go -
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The marked length spectrum Setting of the problem in the closed case

The case of manifolds with hyperbolic cusps

Conjecture (Burns-Katok '85)

The marked length spectrum of a negatively-curved manifold determines
the metric (up to isometries) i.e.: if g and go have negative sectional
curvature, same marked length spectrum Ly = Lg,, then3 ¢: M — M
smooth diffeomorphism isotopic to the identity such that ¢*g = go.

@ Analogue of Michel’s conjecture of rigidity for simple manifolds with
boundary (the boundary distance function should determine the
metric up to isometries),
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The marked length spectrum Setting of the problem in the closed case

The case of manifolds with hyperbolic cusps

Conjecture (Burns-Katok '85)

The marked length spectrum of a negatively-curved manifold determines
the metric (up to isometries) i.e.: if g and go have negative sectional
curvature, same marked length spectrum Ly = Lg,, then3 ¢: M — M
smooth diffeomorphism isotopic to the identity such that ¢*g = go.

@ Analogue of Michel’s conjecture of rigidity for simple manifolds with
boundary (the boundary distance function should determine the
metric up to isometries),

@ Why the marked length spectrum ? The length spectrum (:=
collection of lengths regardless of the homotopy) does not determine
the metric (counterexamples by Vigneras '80)
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The marked length spectrum Setting of the problem in the closed case

The case of manifolds with hyperbolic cusps

Conjecture (Burns-Katok '85)

The marked length spectrum of a negatively-curved manifold determines
the metric (up to isometries) i.e.: if g and go have negative sectional
curvature, same marked length spectrum Ly = Lg,, then3 ¢: M — M
smooth diffeomorphism isotopic to the identity such that ¢*g = go.

@ Analogue of Michel’s conjecture of rigidity for simple manifolds with
boundary (the boundary distance function should determine the
metric up to isometries),

@ Why the marked length spectrum ? The length spectrum (:=
collection of lengths regardless of the homotopy) does not determine
the metric (counterexamples by Vigneras '80)

@ Conjecture can be generalized to Anosov manifolds i.e. manifolds on
which the geodesic flow is uniformly hyperbolic.
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The marked length spectrum Setting of the problem in the closed case

The case of manifolds with hyperbolic cusps

Known results:

@ Guillemin-Kazhdan ’80, Croke-Sharafutdinov '98: proof of the
infinitesimal version of the problem (for a deformation (gs)se(—1,1) of
the metric go),

@ Croke '90, Otal '90: proof for negatively-curved surfaces,
o Katok '88: proof for g conformal to go,

o Besson-Courtois-Gallot ‘95, Hamenstadt '99: proof when
(M, go) is a locally symmetric space.

Theorem (Guillarmou-L. '18, Guillarmou-Knieper-L. '19)

Let (M, go) be a negatively-curved manifold. Then 3k € N* & > 0 such
that: if ||g — gollcx < € and Ly = Lg,, then g is isometric to gp.
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The marked length spectrum

Setting of the problem in the closed case
The case of manifolds with hyperbolic cusps

Met(M)

ker o

90

O(go) == {#"g0}

Tgo 0(90)
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The marked length spectrum Setting of the problem in the closed case

The case of manifolds with hyperbolic cusps

e (M, go) is a cusp manifold i.e. a smooth non-compact Riemannian
manifold with negative curvature s.t. M = My Uy Z;. The ends Z;
are real hyperbolic cusps i.e. Z; ~ [a, +00), x (RY/N)g, where A is
a unimodular lattice and

dy? + do?
glz, ~ 2
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The marked length spectrum Setting of the problem in the closed case

The case of manifolds with hyperbolic cusps

e (M, go) is a cusp manifold i.e. a smooth non-compact Riemannian
manifold with negative curvature s.t. M = My Uy Z;. The ends Z;
are real hyperbolic cusps i.e. Z; ~ [a, +00), x (RY/N)g, where A is
a unimodular lattice and

dy? + do?
glz, ~ 2

@ C = set of hyperbolic free homotopy classes (in opposition to the
parabolic ones wrapping exclusively around the cusps).
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The marked length spectrum Setting of the problem in the closed case
The case of manifolds with hyperbolic cusps

Theorem (Guedes Bonthonneau-L. '19)

Let (M, go) be a cusp manifold. Then 3k € N* ¢ > 0 and a codimension
1 submanifold N of the space of isometry classes such that: if

O(g) eN,

lg — golly—kcx < € and Ly = Lg,, then g is isometric to g.

@ Known results: proof for surfaces by Cao ’95.
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Taylor expansion of the marked length spectrum

Ingredients of proof in the closed case T aremase]] e er

@ The marked length spectrum

© Ingredients of proof in the closed case
@ Taylor expansion of the marked length spectrum

© What is new in the case of cusp manifolds?
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Taylor expansion of the marked length spectrum

Ingredients of proof in the closed case T aremase]] e er

Idea of proof of

Theorem (Guillarmou-L. '18, Guillarmou-Knieper-L. '19)

Let (M, go) be a negatively-curved manifold. Then 3k € N* & > 0 such
that: if ||g — gollcx < € and Ly = Lg,, then g is isometric to gp.

@ Solenoidal reduction: there exists a diffeomorphism ¢ such that:
5(¢*g) = 0. So, WLOG, we can assume g — gp € kerd.

© Taylor expansion of the ratio of the length spectra:

L(g) = Lg/Lgy =1+ dLy(g — &) + Olllg — &olZ>)

Q If Ly = Ly, then || dLg (g — 80)lle= < Cllg — gol|%s- Thus, if we
have a stability estimate for dLg, on kerd like

[fllcs < ClldLgo (F)lle,

we are done.
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Taylor expansion of the marked length spectrum

Ingredients of proof in the closed case T aremase]] e er

Idea of proof of

Theorem (Guillarmou-L. '18, Guillarmou-Knieper-L. '19)

Let (M, go) be a negatively-curved manifold. Then 3k € N* & > 0 such
that: if ||g — gollcx < € and Ly = Lg,, then g is isometric to gp.

@ Solenoidal reduction: there exists a diffeomorphism ¢ such that:
d(¢*g) = 0. So, WLOG, we can assume g — gp € kerd.

© Taylor expansion of the ratio of the length spectra:

L£(g) = Lg/Lgy =1+ dLg(g — 80) + O(llg — gollzs)

Q If Ly = Ly, then || dLg (g — 80)lle= < Cllg — gol|%s- Thus, if we
have a stability estimate for dLg, on kerd like

Ifllca < ClldLgy (F)]|f || Exrnos

we are done (using some interpolation estimates).
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Taylor expansion of the marked length spectrum
The normal operator

Definition (Geodesic X-ray transform)

18 : CO(M, @2 T*M) — £°°(C),

Ingredients of proof in the closed case

. 1 (750 ())
15°f : Ty B (7(t):1
8f.C 53¢ ﬂ(vgo(c))/o (e (V(8), ¥(¢))dt,

with g, (c) unique closed geodesic in c.

o dlg =1/2 x I£,

e In negative curvature, ker I5° = T,,O(go) (Croke-Sharafutdinov
'98). In other words, /5° is injective on ker 4.

Question: Stability estimates for the X-ray transform /5°7?

Theorem (Guillarmou-L. '18, Goiizel-L. '19)

Let 0 < o < . Then, 3C,0 > 0 such that:

Vf e CPnkerd, ||fllcs < ClEF|0 || Fllca?
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Ingredients of proof in the closed case Taylor expansion of the marked length spectrum
The normal operator

@ On a simple manifold, for (x, v) € 0_SM,

Oty (@) (@50

£4(x,v)
bf(x,v) = / 0 (1(2), 4(2))de

+oo
= / ™ ﬁext(‘»@t(Xa V))dt _SM
0

= (I omy)fexe(x, v)
@ The normal operator My := I3k : C®(M,@%2T*M) O is

e a WDO of order —1,
o formally selfadjoint and nonnegative,

o elliptic on kerd.

(z,v)

04 SM

@ One can write My := mp, [*I7*, with [*] = fj;: eXdt. If

Ri(X) := (X £ X)~! denotes the resolvent of the generator of the
geodesic flow, then /*/ = R, (0) — R_(0). Thus:

I_|2 = I2*I2 = 7T2*(R+(0) — R_(O))TFQ*

Local rigidity of manifolds with hyperbolic cusps
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Taylor expansion of the marked length spectrum

Ingredients of proof in the closed case TP ] eperee

Meromorphic extension of the resolvent (X 4= \)~!

@ Idea (Guillarmou '17): In the closed case,
mimick the case of a simple manifold, .
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Taylor expansion of the marked length spectrum

Ingredients of proof in the closed case TP ] eperee

Meromorphic extension of the resolvent (X 4= \)~!

@ Idea (Guillarmou '17): In the closed case,
mimick the case of a simple manifold, ‘

e Ri(A):= (X £ A)7L, initially defined on '
R(A) > 0, admit a meromorphic extension to Lo

C when acting on anisotropic Sobolev spaces .
with poles of finite ranks: the Pollicott-Ruelle
resonances (Liverani ‘04, Butterley-Liverani .
'07, Faure-Sjostrand '11, Dyatlov-Zworski

'13, Faure-Tsuji '13 ’17),
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Taylor expansion of the marked length spectrum

Ingredients of proof in the closed case TP ] eperee

Meromorphic extension of the resolvent (X 4= \)~!

: ';s“(z)‘

@ Idea (Guillarmou '17): In the closed case, :
mimick the case of a simple manifold, e
e Ri(A):= (X £ A)7L, initially defined on ~
R(A) > 0, admit a meromorphic extension to ot R)
C when acting on anisotropic Sobolev spaces .. ~
with poles of finite ranks: the Pollicott-Ruelle
resonances (Liverani ‘04, Butterley-Liverani .
'07, Faure-Sjostrand '11, Dyatlov-Zworski

"13, Faure-Tsuji '13 '17),
@ 0 is a pole of order 1 and Resp((X £ \)71)=1®1,
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Taylor expansion of the marked length spectrum

Ingredients of proof in the closed case TP ] eperee

Meromorphic extension of the resolvent (X 4= \)~!

: ';s“(z)‘

@ Idea (Guillarmou '17): In the closed case, :
mimick the case of a simple manifold, e
e Ri(A):= (X £ A)7L, initially defined on ~
R(A) > 0, admit a meromorphic extension to ot R)
C when acting on anisotropic Sobolev spaces .. ~
with poles of finite ranks: the Pollicott-Ruelle
resonances (Liverani ‘04, Butterley-Liverani .
'07, Faure-Sjostrand '11, Dyatlov-Zworski

"13, Faure-Tsuji '13 '17),
@ 0 is a pole of order 1 and Resp((X £ \)71)=1®1,

@ Define
My := 72, (RY?(0) — R (0)m5 +72.1 0 1
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Taylor expansion of the marked length spectrum

Ingredients of proof in the closed case TP ] eperee

Properties of [,

o A more “explicit” expression of My: if f1,f € C*(M, 22 T*M) have
0-average, then

+oo
(Mafy, )12 = / (™ m3 1, 73 ) i2(5M a0t

—0o0

Think of My as "2, o [ eXdtoms”.

Theorem (Guillarmou ’17, Guillarmou-L. '18, Gouézel-L. '19)

@ [y is a WDO of order —1, elliptic on tensors in ker d,
@ One has: kerly = ker b = T,,0(go),

@ This implies the elliptic estimate:

|fllws < ClMaf||pssz, VF € kerd

Question: link between I, and L7 We are looking for an estimate like:

Hﬂzf‘ Hstr < C||I2f||3°°||f‘|ll-l;+01776

Thibault Lefeuvre Local rigidity of manifolds with hyperbolic cusps



Taylor expansion of the marked length spectrum

Ingredients of proof in the closed case TP ] eperee

Approximate Livsic theorem

@ Recall that

My := m, (R1°'(0) — R™(0)+1 = 1) 7}

=N

@ By construction I does not see coboundaries namely M(Xu) = 0 for
all u € H?(SM),s > 0. There exists an orthogonal decomposition of
functions (Gouézel-L. "19)

H(SM) S £ = Xu+ b, [[hllws < ClIFI 1
o Apply this to m3f = Xu + h:
[M2f (|1 = [lm2. (73 ) e
= |72, (X0 + h)| s
< |Jm2. M| s
< [lhlle < CllFIF=" I Flle”
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

@ The marked length spectrum

© Ingredients of proof in the closed case

© What is new in the case of cusp manifolds?
o Key ingredients
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

Key ingredients of the previous proof

@ Meromorphic extension of (X £ \)~! to a strip {R()\) > —1/1515}
to define MM,
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

Key ingredients of the previous proof

@ Meromorphic extension of (X £ \)~! to a strip {R()\) > —1/1515}
to define MM,

@ Stability estimate ||f||gs < C||Maf||gs+2 for £ € ker 4,
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

Key ingredients of the previous proof

@ Meromorphic extension of (X £ \)~! to a strip {R()\) > —1/1515}
to define MM,

@ Stability estimate ||f||gs < C||Maf||gs+2 for £ € ker 4,

© Approximate Livsic Theorem.
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

Key ingredients of the previous proof

@ Meromorphic extension of (X £ \)~! to a strip {R()\) > —1/1515}
to define I,

@ Stability estimate ||f||ys < C||Maf||ys+2 for £ € ker,

© Approximate Livsic Theorem.
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

Key ingredients of the previous proof

@ Meromorphic extension of (X & A\)~! acting on anisotropic Sobolev
spaces proved on a small strip {R(\) > —d} by Guedes
Bonthonneau-Weich '17. This is done by combining the
Dyatlov-Zworski '13 approach (radial points estimates) with ideas
inspired by Melrose's b-calculus.

@ The estimate ||f||g: < C||Maf||gs+2 for f € kerd is based on a
parametrix construction for Ny with a compact remainder.

Question: How to produce compact remainders?
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

A geometric calculus

o Guedes Bonthonneau 16 introduced on cusps a “geometric”
calculus UpnerW™ in which My will fit. It is an extension of the
algebra of differential operators generated by the orthonormal vectors

yaya yOp

@ An elliptic WDO P € W™ can be inverted in this calculus:
QP =1+ R, with R smoothing i.e. R: H~* — H* bounded for all
s € R. But R is not compact! because the inclusion H* < H= for
s; > sy is no longer compact. However y?~¢H" — yPH*® is
compact (e > 0).
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

Two important remarks:

@ The lack of compactness in Kato-Rellich comes from #-independant
functions in the cusp. In other words, for s; > s, H* < H} is
compact, where the |-subscript denotes functions f such that

Wy, € [a,+00), / F(y,0)d0 = 0
(R/A)

@ The elliptic operators P we are interested in (like ;) are geometric
and thus “commute” with 9y in the sense that [P, dyg] = compact. In
other words, they act diagonally on Fourier modes in the 6-variable
(modulo compact junk).

Conclusion: In order to invert a geometric elliptic WDO P modulo
compact remainder, one needs to invert it exactly on #-independent
functions i.e. construct @', R’ with R’ smoothing such that

QP =1+ R’ where given f € H®, the 6-independent component of R'f
is ~ 0 (i.e. fast decay at infinity).
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

Conclusion: In order to invert a geometric elliptic WDO P modulo
compact remainder, one needs to invert it exactly on #-independent
functions i.e. construct @', R’ with R’ smoothing such that

QP =1+ R’ where given f € H®, the 6-independent component of R'f
is = 0 (i.e. fast decay at infinity).

@ Given such a geometric operator P, it also commutes with the
generator of the dilation yd, on 6-independent functions i.e.

[P, y0,] = compact on such functions. In the r = log y variable,
[P, ;] = compact.

@ Thus, modulo compact junk, on #-independent functions and
sufficiently high in the cusp, P looks like a Fourier multiplier. In
other words, for £ € R, P(e’s") ~ Ip(i¢)e’sr, with Ip(i¢) € C. More
generally, for A\ =p+ i € C,

P(e*) = P(efre®") ~ Ip(\)e*

Here p € R is a weight and corresponds to looking at the operator P
on the spaces y/?yPHS.
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

P(e*) = P(eP e®") ~ Ip(\)e™

We call C 5 A — Ip(X) € C the indicial operator associated to P, it
is a holomorphic function of A. Like in b-calculus, the inversion of P
modulo compact remainder on the spaces y/?y? HS requires

Ip(p+i€) #0, VEER

If P acts on a vector bundle E — Z, I()) is matrix-valued. This is
the case for P = I1,.

P may also act on a product manifold F x Z, in which case /()
takes values in (pseudo)differential operators acting on C>°(F). This
is the case for the geodesic vector field X acting on SM, unit
tangent bundle of a cusp surface. In the (y, 0, ¢) coordinates,

X = cos ¢y Dy + sin gy g + sin ¢p0y
Thus: Ix(\) = Acos ¢ + sin ¢pdy € Diff* (S1).

Thibault Lefeuvre Local rigidity of manifolds with hyperbolic cusps



Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

Back to 15!

@ C> A Iny(N) is a matrix-valued holomorphic function of .
Question: What are its indicial roots i.e. for which values is it
invertible? We need to look its action on symmetric 2-tensors of the
form

dy?> .dy®df;+db;@dy .db;
L A A A A R
y? 2y2 y?

i.e. compute In,(\)f =y~ Ma(y*f).

@ However, we are only interested in [, acting on ker §. This implies
the linear relations b; = 0,a(A — 1) + Tr(c) = 0 for f. Moreover, it
is sufficient to compute (In,(A\)f, f) and show that this is # 0 when
f # 0. This implies a “lower bound” on the indicial roots of I5.
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

@ We obtain:

Mp(d=A
Una(NFF) = 15 +Vc1)|)((S;:iW N (:Eig : Edil))\>

2 2
y [|32 (1+ 'd_dA' 4 A(dd_ N |d—)\|22((jjr;;)
Ad — \)
+2Tr|C2d(d+2)]
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

no indicial roots

Figure: Lower bound on the indicial roots of I, (A+d/2).
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

Theorem (Guedes Bonthonneau-L. '19)

For s > 0 small enough, there exists C,0 > 0 such that:

Vfe C'nkerd,  [|fllp-1-s < Clllf||f=lfllE:’
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Key ingredients

What is new in the case of cusp manifolds? A geometric calculus

Thank you for your attention!
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