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(M, g0) smooth closed (compact, ∂M = ∅) Riemannian manifold
with negative sectional curvature.

C = set of free homotopy classes 1-to-1↔ closed g0-geodesics (i.e.
∀c ∈ C,∃!γg0(c) ∈ c)

Definition (The marked length spectrum)

Lg0 :

∣∣∣∣ C → R∗+
c 7→ `g0(γc),

`g0(γc) Riemannian length computed with respect to g0.
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Conjecture (Burns-Katok ’85)

The marked length spectrum of a negatively-curved manifold determines
the metric (up to isometries) i.e.: if g and g0 have negative sectional
curvature, same marked length spectrum Lg = Lg0 , then ∃ φ : M → M

smooth diffeomorphism isotopic to the identity such that φ∗g = g0.

Analogue of Michel’s conjecture of rigidity for simple manifolds with
boundary (the boundary distance function should determine the
metric up to isometries),

Why the marked length spectrum ? The length spectrum (:=
collection of lengths regardless of the homotopy) does not determine
the metric (counterexamples by Vigneras ’80)

Conjecture can be generalized to Anosov manifolds i.e. manifolds on
which the geodesic flow is uniformly hyperbolic.
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Known results:

Guillemin-Kazhdan ’80, Croke-Sharafutdinov ’98: proof of the
infinitesimal version of the problem (for a deformation (gs)s∈(−1,1) of
the metric g0),

Croke ’90, Otal ’90: proof for negatively-curved surfaces,

Katok ’88: proof for g conformal to g0,

Besson-Courtois-Gallot ’95, Hamenstädt ’99: proof when
(M, g0) is a locally symmetric space.

Theorem (Guillarmou-L. ’18, Guillarmou-Knieper-L. ’19)

Let (M, g0) be a negatively-curved manifold. Then ∃k ∈ N∗, ε > 0 such
that: if ‖g − g0‖C k < ε and Lg = Lg0 , then g is isometric to g0.
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Met(M)

g0

O(g0) := fφ∗g0g

g

O(g)

ker δ

Tg0
O(g0)
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(M, g0) is a cusp manifold i.e. a smooth non-compact Riemannian
manifold with negative curvature s.t. M = M0 ∪` Z`. The ends Z`
are real hyperbolic cusps i.e. Z` ' [a,+∞)y × (Rd/Λ)θ, where Λ is
a unimodular lattice and

g |Z` '
dy2 + dθ2

y2

C = set of hyperbolic free homotopy classes (in opposition to the
parabolic ones wrapping exclusively around the cusps).
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Theorem (Guedes Bonthonneau-L. ’19)

Let (M, g0) be a cusp manifold. Then ∃k ∈ N∗, ε > 0 and a codimension
1 submanifold N of the space of isometry classes such that: if
O(g) ∈ N , ‖g − g0‖y−kC k < ε and Lg = Lg0 , then g is isometric to g0.

Known results: proof for surfaces by Cao ’95.
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Idea of proof of

Theorem (Guillarmou-L. ’18, Guillarmou-Knieper-L. ’19)

Let (M, g0) be a negatively-curved manifold. Then ∃k ∈ N∗, ε > 0 such
that: if ‖g − g0‖C k < ε and Lg = Lg0 , then g is isometric to g0.

1 Solenoidal reduction: there exists a diffeomorphism φ such that:
δ(φ∗g) = 0. So, WLOG, we can assume g − g0 ∈ ker δ.

2 Taylor expansion of the ratio of the length spectra:

L(g) := Lg/Lg0 = 1 + dLg0(g − g0) +O(‖g − g0‖2C3)

3 If Lg = Lg0 , then ‖dLg0(g − g0)‖`∞ ≤ C‖g − g0‖2C3 . Thus, if we
have a stability estimate for dLg0 on ker δ like

‖f ‖C3 ≤ C‖dLg0(f )‖`∞ ,

we are done.
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Idea of proof of

Theorem (Guillarmou-L. ’18, Guillarmou-Knieper-L. ’19)

Let (M, g0) be a negatively-curved manifold. Then ∃k ∈ N∗, ε > 0 such
that: if ‖g − g0‖C k < ε and Lg = Lg0 , then g is isometric to g0.

1 Solenoidal reduction: there exists a diffeomorphism φ such that:
δ(φ∗g) = 0. So, WLOG, we can assume g − g0 ∈ ker δ.

2 Taylor expansion of the ratio of the length spectra:

L(g) := Lg/Lg0 = 1 + dLg0(g − g0) +O(‖g − g0‖2C3)

3 If Lg = Lg0 , then ‖dLg0(g − g0)‖`∞ ≤ C‖g − g0‖2C3 . Thus, if we
have a stability estimate for dLg0 on ker δ like

‖f ‖C2 ≤ C‖dLg0(f )‖θ`∞‖f ‖1−θC1789 ,

we are done (using some interpolation estimates).
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Definition (Geodesic X-ray transform)

I g0
2 : C 0(M,⊗2

ST
∗M)→ `∞(C),

I g0
2 f : C 3 c 7→ 1

`(γg0(c))

∫ `(γg0 (c))

0
fγ(t)(γ̇(t), γ̇(t))dt,

with γg0(c) unique closed geodesic in c .

dLg0 = 1/2× I g0
2 ,

In negative curvature, ker I g0
2 = Tg0O(g0) (Croke-Sharafutdinov

’98). In other words, I g0
2 is injective on ker δ.

Question: Stability estimates for the X-ray transform I g0
2 ?

Theorem (Guillarmou-L. ’18, Goüzel-L. ’19)

Let 0 < α < β. Then, ∃C , θ > 0 such that:

∀f ∈ Cβ ∩ ker δ, ‖f ‖Cβ ≤ C‖I g0
2 f ‖θ`∞‖f ‖1−θCα
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On a simple manifold, for (x , v) ∈ ∂−SM,

I2f (x , v) =

∫ `+(x,v)

0
fγ(t)(γ̇(t), γ̇(t))dt

=

∫ +∞

0
π∗2 fext(ϕt(x , v))dt

= (I ◦ π∗2)fext(x , v)

M

(x; v)

@
−
SM

'`+(x;v)(x; v)

@+SM

The normal operator Π2 := I ∗2 I2 : C∞(M,⊗2
ST
∗M) 	 is

a ΨDO of order −1,
formally selfadjoint and nonnegative,
elliptic on ker δ.

One can write Π2 := π2∗I
∗Iπ2

∗, with I ∗I =
∫ +∞
−∞ etXdt. If

R±(λ) := (X ± λ)−1 denotes the resolvent of the generator of the
geodesic flow, then I ∗I = R+(0)− R−(0). Thus:

Π2 = I ∗2 I2 = π2∗(R+(0)− R−(0))π2
∗
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Meromorphic extension of the resolvent (X ± λ)−1

Idea (Guillarmou ’17): In the closed case,
mimick the case of a simple manifold,

R±(λ) := (X ± λ)−1, initially defined on
<(λ) > 0, admit a meromorphic extension to
C when acting on anisotropic Sobolev spaces
with poles of finite ranks: the Pollicott-Ruelle
resonances (Liverani ’04, Butterley-Liverani
’07, Faure-Sjöstrand ’11, Dyatlov-Zworski
’13, Faure-Tsuji ’13 ’17),

<(z)

=(z)

0

spectral gap

0 is a pole of order 1 and Res0((X ± λ)−1) = 1⊗ 1,

Define
Π2 := π2∗(R

hol
+ (0)− Rhol

− (0))π∗2+π2∗1⊗ 1π∗2
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Properties of Π2

A more “explicit” expression of Π2: if f1, f2 ∈ C∞(M,⊗2
ST
∗M) have

0-average, then

〈Π2f1, f2〉L2 =

∫ +∞

−∞
〈etXπ∗2 f1, π∗2 f2〉L2(SM,dµLiouville)dt

Think of Π2 as “π2∗ ◦
∫
R etXdt ◦ π∗2 ”.

Theorem (Guillarmou ’17, Guillarmou-L. ’18, Gouëzel-L. ’19)

Π2 is a ΨDO of order −1, elliptic on tensors in ker δ,

One has: kerΠ2 = ker I2 = Tg0O(g0),

This implies the elliptic estimate:

‖f ‖Hs ≤ C‖Π2f ‖Hs+1 , ∀f ∈ ker δ

Question: link between Π2 and I2? We are looking for an estimate like:

‖Π2f ‖Hs+1 ≤ C‖I2f ‖θ`∞‖f ‖1−θHs+1776

Answer: not obvious! Thibault Lefeuvre Local rigidity of manifolds with hyperbolic cusps
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Approximate Livsic theorem

Recall that

Π2 := π2∗ (Rhol
+ (0)− Rhol

− (0)+1⊗ 1)︸ ︷︷ ︸
=Π

π∗2

By construction Π does not see coboundaries namely Π(Xu) = 0 for
all u ∈ Hs(SM), s > 0. There exists an orthogonal decomposition of
functions (Gouëzel-L. ’19)

Hs(SM) 3 f = Xu + h, ‖h‖Hs ≤ C‖If ‖1−θ`∞ ‖f ‖
1−θ
C1

Apply this to π∗2 f = Xu + h:

‖Π2f ‖Hs = ‖π2∗Π(π∗2 f )‖Hs

= ‖π2∗Π(��Xu + h)‖Hs

≤ ‖π2∗Πh‖Hs

≤ ‖h‖Hs ≤ C‖I2f ‖1−θ`∞ ‖f ‖
1−θ
C1
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Z1

Z2

Z3

M0

Thibault Lefeuvre Local rigidity of manifolds with hyperbolic cusps



The marked length spectrum
Ingredients of proof in the closed case

What is new in the case of cusp manifolds?

Key ingredients

A geometric calculus

Key ingredients of the previous proof

1 Meromorphic extension of (X ± λ)−1 to a strip {<(λ) > −1/1515}
to define Π2,

2 Stability estimate ‖f ‖Hs ≤ C‖Π2f ‖Hs+1 for f ∈ ker δ,
3 Approximate Livsic Theorem.
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What is new in the case of cusp manifolds?

Key ingredients

A geometric calculus

Key ingredients of the previous proof

Meromorphic extension of (X ± λ)−1 acting on anisotropic Sobolev
spaces proved on a small strip {<(λ) > −δ} by Guedes
Bonthonneau-Weich ’17. This is done by combining the
Dyatlov-Zworski ’13 approach (radial points estimates) with ideas
inspired by Melrose’s b-calculus.

The estimate ‖f ‖Hs ≤ C‖Π2f ‖Hs+1 for f ∈ ker δ is based on a
parametrix construction for Π2 with a compact remainder.

Question: How to produce compact remainders?
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A geometric calculus

Guedes Bonthonneau ’16 introduced on cusps a “geometric”
calculus ∪m∈RΨm in which Π2 will fit. It is an extension of the
algebra of differential operators generated by the orthonormal vectors

y∂y , y∂θ

An elliptic ΨDO P ∈ Ψm can be inverted in this calculus:
QP = 1 + R, with R smoothing i.e. R : H−s → Hs bounded for all
s ∈ R. But R is not compact! because the inclusion Hs1 ↪→ Hs2 for
s1 > s2 is no longer compact. However yρ−εHs1 ↪→ yρHs2 is
compact (ε > 0).

Thibault Lefeuvre Local rigidity of manifolds with hyperbolic cusps
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Key ingredients

A geometric calculus

Two important remarks:

The lack of compactness in Kato-Rellich comes from θ-independant
functions in the cusp. In other words, for s1 > s2, Hs1

⊥ ↪→ Hs2
⊥ is

compact, where the ⊥-subscript denotes functions f such that

∀y ,∈ [a,+∞),

∫
(R/Λ)d

f (y , θ)dθ = 0

The elliptic operators P we are interested in (like Π2) are geometric
and thus “commute” with ∂θ in the sense that [P, ∂θ] = compact. In
other words, they act diagonally on Fourier modes in the θ-variable
(modulo compact junk).

Conclusion: In order to invert a geometric elliptic ΨDO P modulo
compact remainder, one needs to invert it exactly on θ-independent
functions i.e. construct Q ′,R ′ with R ′ smoothing such that
Q ′P = 1 + R ′ where given f ∈ Hs , the θ-independent component of R ′f
is ≈ 0 (i.e. fast decay at infinity).

Thibault Lefeuvre Local rigidity of manifolds with hyperbolic cusps
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Conclusion: In order to invert a geometric elliptic ΨDO P modulo
compact remainder, one needs to invert it exactly on θ-independent
functions i.e. construct Q ′,R ′ with R ′ smoothing such that
Q ′P = 1 + R ′ where given f ∈ Hs , the θ-independent component of R ′f
is ≈ 0 (i.e. fast decay at infinity).

Given such a geometric operator P, it also commutes with the
generator of the dilation y∂y on θ-independent functions i.e.
[P, y∂y ] = compact on such functions. In the r = log y variable,
[P, ∂r ] = compact.
Thus, modulo compact junk, on θ-independent functions and
sufficiently high in the cusp, P looks like a Fourier multiplier. In
other words, for ξ ∈ R, P(e iξr ) ≈ IP(iξ)e iξr , with IP(iξ) ∈ C. More
generally, for λ = ρ+ iξ ∈ C,

P(eλr ) = P(eρre iξr ) ≈ IP(λ)eλr

Here ρ ∈ R is a weight and corresponds to looking at the operator P
on the spaces yd/2yρHs .
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What is new in the case of cusp manifolds?

Key ingredients

A geometric calculus

P(eλr ) = P(eρre iξr ) ≈ IP(λ)eλr

We call C 3 λ 7→ IP(λ) ∈ C the indicial operator associated to P, it
is a holomorphic function of λ. Like in b-calculus, the inversion of P
modulo compact remainder on the spaces yd/2yρHs requires

IP(ρ+ iξ) 6= 0, ∀ξ ∈ R

.
If P acts on a vector bundle E → Z , I (λ) is matrix-valued. This is
the case for P = Π2.
P may also act on a product manifold F × Z , in which case I (λ)

takes values in (pseudo)differential operators acting on C∞(F ). This
is the case for the geodesic vector field X acting on SM, unit
tangent bundle of a cusp surface. In the (y , θ, φ) coordinates,

X = cosφy∂y + sinφy∂θ + sinφ∂φ

Thus: IX (λ) = λ cosφ+ sinφ∂φ ∈ Diff1(S1).
Thibault Lefeuvre Local rigidity of manifolds with hyperbolic cusps
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Back to Π2!

C 3 λ 7→ IΠ2(λ) is a matrix-valued holomorphic function of λ.
Question: What are its indicial roots i.e. for which values is it
invertible? We need to look its action on symmetric 2-tensors of the
form

f = a
dy2

y2 + bi
dy ⊗ dθi + dθi ⊗ dy

2y2 + c ij
dθ2

ij

y2

i.e. compute IΠ2(λ)f = y−λΠ2(yλf ).

However, we are only interested in Π2 acting on ker δ. This implies
the linear relations bi = 0, a(λ− 1) + Tr(c) = 0 for f . Moreover, it
is sufficient to compute 〈IΠ2(λ)f , f 〉 and show that this is 6= 0 when
f 6= 0. This implies a ‘‘lower bound” on the indicial roots of Π2.
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We obtain:

〈IΠ2(λ)f , f 〉 =
vol(Sd−1)π

(λ+ 1)(d + 1− λ)

Γ

(
λ

2

)
Γ

(
d − λ
2

)
Γ

(
λ+ 1
2

)
Γ

(
d + 1− λ

2

)
×
[
|a|2

(
1 +
|d − λ|2

d
+
λ(d − λ)

d
+ |d − λ|2λ(d − λ)

d(d + 2)

)
+2Tr |c |2λ(d − λ)

d(d + 2)

]
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?

?

−d=2 d=2

no indicial roots

Figure: Lower bound on the indicial roots of IΠ2 (λ+d/2).
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Theorem (Guedes Bonthonneau-L. ’19)

For s > 0 small enough, there exists C , θ > 0 such that:

∀f ∈ C 1 ∩ ker δ, ‖f ‖H−1−s ≤ C‖I2f ‖θ`∞‖f ‖1−θC1
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Thank you for your attention!

Thibault Lefeuvre Local rigidity of manifolds with hyperbolic cusps


	The marked length spectrum
	Setting of the problem in the closed case
	The case of manifolds with hyperbolic cusps

	Ingredients of proof in the closed case
	Taylor expansion of the marked length spectrum
	The normal operator

	What is new in the case of cusp manifolds?
	Key ingredients
	A geometric calculus


